A simple crack system (Figure 1) can be readily studied to estimate the Hertzian conoidal crack angle and length, and also the stress intensity factor.

This is a 3-D brittle elastic half-space on the flat boundary Ox1x3 of which a rectilinear contact pressure along Ox3 is exerted by a cylinder whose axis is parallel to x3; the cylinder lies along Ox3 on the flat boundary. A planar straight-front crack inclined by an angle θ with respect to x1x3 is present under the action of the load along x2 due to the cylinder. The relevance of this modelling may be understood as follows. A slab of cylinder with thickness dx3 at spatial position O’ (0, 0, x3) exerts elastic fields (displacement and stress) proportional to those of a point load at O’ (proportionality coefficient dx3). Physically, this corresponds to the action of a spherical indenter to which is associated a conoidal fracture surface for sufficiently large load (Roesler (1956) as quoted by Frank and Lawn (1967)). The coalescence of conoidal cracks from different slabs of cylinder along Ox3 would produce planar fracture surface envelops parallel to x3 at large crack lengths. Therefore, we expect the modelling in Figure 1 to provide the experimentally observed fracture surface inclination angle θ and crack length l as a function of critical load P by both a spherical indenter and cylinder. This is the essence of the modelling depicted schematically in Figure 1.

More Patrick N.B. Anongba's questions See All
Similar questions and discussions