I am totally new to LCA but have conducted a latent class analysis in R using the glca package and found a 4 class model to be preffered according to fit values (BIC, AIC, Entropy). I am now trying to add in gender as a covariate but not quite sure how to interpret the results. I understand that the output is comparing class 1 to 4, 2 to 4etc for class differences. I have Gender_Binary as my gender variable with values male=1, female=2 but which value (e.g male or female) is being displayed in the output? Can anyone provide a basic analysis of what this output shows or suggest some good LCA guides for R?

Class 1 / 4 :

Odds Ratio Coefficient  Std. Error  t value  Pr(>|t|)

(Intercept)     16.34772     2.79409     0.64192    4.353  1.77e-05 ***

Gender_Binary    0.04619    -3.07509     0.52766   -5.828  1.27e-08 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Class 2 / 4 :

Odds Ratio Coefficient  Std. Error  t value  Pr(>|t|)

(Intercept)       4.9731      1.6040      0.4526    3.544  0.000447 ***

Gender_Binary     0.2294     -1.4725      0.2922   -5.039   7.5e-07 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Class 3 / 4 :

Odds Ratio Coefficient  Std. Error  t value  Pr(>|t|)

(Intercept)       0.1466     -1.9199      0.8710   -2.204    0.0282 *

Gender_Binary     1.1356      0.1272      0.4794    0.265    0.7909

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Similar questions and discussions