I am trying to find the (a,b,c) vs (h,k,l) relation to determine the interplanar spacing of a crystal I believe to be face-centered orthorhombic (FCO). The basic equation available everywhere is valid for the primitive orthorhombic, but I cannot agree that it would work for a FCO system, with obviously lower symmetry. After playing with VESTA, I simulated two different diffraction pattern made from three cubic cells, a primitive, a body-centered, and a face-centered, with identical cell parameters. It seems that the BCC has 100 and 111 extinct, while the FCC has 100 and 110 extinct. How can you demonstrate that algebraically?
Cheers