Solivagant (nomadic) planets are roaming the interstellar space. Depending on the steepness of the mass ditribution law, There may be significantly more substellar objects in the vicinity of the Sun than there are normal stars. A few nearby extremely cool object of super-Jupiter mass have been discovered (e.g., one with WISE). Despite the absence of light, such systems of planetary mass may be teeming with life. According to M. Eubanks, more solivagant planets will be observed in the future with JWST, ALMA and SPICA. My calculations show that the tidal heating of Earth generated by the Moon may presently come up to ~5 TW. A heat source of this order can sustain a massive subsurface ocean on a lonely exoearth for gigayears. The question is, how to observationally verify that nearby solivagant planets rapidly rotate? The spin rate of some stars has been determined photometrically from the modulations caused by persistent features (dark or hot spots) on the photospheres. Would that be the best way to observe the spin of very cold planets? Are there other possibilities?

More Valeri Makarov's questions See All
Similar questions and discussions