Is it possible to build a highly effective forecasting system for future financial and economic crises based on artificial intelligence technology in combination with Data Science analytics, Big Data Analytics, Business Intelligence and/or other Industry 4.0 technologies?
Is it possible to build a highly effective, multi-faceted, intelligent forecasting system for future financial and economic crises based on artificial intelligence technology in combination with Data Science analytics, Big Data Analytics, Business Intelligence and/or other Industry 4.0 technologies as part of a forecasting system for complex, multi-faceted economic processes in such a way as to reduce the scale of the impact of the paradox of a self-fulfilling prediction and to increase the scale of the paradox of not allowing a predicted crisis to occur due to pre-emptive anti-crisis measures applied?
What do you think about the involvement of artificial intelligence in combination with Data Science, Big Data Analytics, Business Intelligence and/or other Industry 4.0 technologies for the development of sophisticated, complex predictive models for estimating current and forward-looking levels of systemic financial, economic risks, debt of the state's public finance system, systemic credit risks of commercially operating financial institutions and economic entities, forecasting trends in economic developments and predicting future financial and economic crises?
Research and development work is already underway to teach artificial intelligence to 'think', i.e. the conscious thought process realised in the human brain. The aforementioned thinking process, awareness of one's own existence, the ability to think abstractly and critically, and to separate knowledge acquired in the learning process from its processing in the abstract thinking process in the conscious thinking process are just some of the abilities attributed exclusively to humans. However, as part of technological progress and improvements in artificial intelligence technology, attempts are being made to create "thinking" computers or androids, and in the future there may be attempts to create an artificial consciousness that is a digital creation, but which functions in a similar way to human consciousness. At the same time, as part of improving artificial intelligence technology, creating its next generation, teaching artificial intelligence to perform work requiring creativity, systems are being developed to process the ever-increasing amount of data and information stored on Big Data Analytics platform servers and taken, for example, from selected websites. In this way, it may be possible in the future to create "thinking" computers, which, based on online access to the Internet and data downloaded according to the needs of the tasks performed and processing downloaded data and information in real time, will be able to develop predictive models and specific forecasts of future processes and phenomena based on developed models composed of algorithms resulting from previously applied machine learning processes. When such technological solutions become possible, the following question arises, i.e. the question of taking into account in the built intelligent, multifaceted forecasting models known for years paradoxes concerning forecasted phenomena, which are to appear only in the future and there is no 100% certainty that they will appear. Well, among the various paradoxes of this kind, two particular ones can be pointed out. One is the paradox of a self-fulfilling prophecy and the other is the paradox of not allowing a predicted crisis to occur due to pre-emptive anti-crisis measures applied. If these two paradoxes were taken into account within the framework of the intelligent, multi-faceted forecasting models being built, their effect could be correlated asymmetrically and inversely proportional. In view of the above, in the future, once artificial intelligence has been appropriately improved by teaching it to "think" and to process huge amounts of data and information in real time in a multi-criteria, creative manner, it may be possible to build a highly effective, multi-faceted, intelligent forecasting system for future financial and economic crises based on artificial intelligence technology, a system for forecasting complex, multi-faceted economic processes in such a way as to reduce the scale of the impact of the paradox of a self-fulfilling prophecy and increase the scale of the paradox of not allowing a predicted crisis to occur due to pre-emptive anti-crisis measures applied. In terms of multi-criteria processing of large data sets conducted with the involvement of artificial intelligence, Data Science, Big Data Analytics, Business Intelligence and/or other Industry 4. 0 technologies, which make it possible to effectively and increasingly automatically operate on large sets of data and information, thus increasing the possibility of developing advanced, complex forecasting models for estimating current and future levels of systemic financial and economic risks, indebtedness of the state's public finance system, systemic credit risks of commercially operating financial institutions and economic entities, forecasting economic trends and predicting future financial and economic crises.
In view of the above, I address the following questions to the esteemed community of scientists and researchers:
Is it possible to build a highly effective, multi-faceted, intelligent forecasting system for future financial and economic crises based on artificial intelligence technology in combination with Data Science, Big Data Analytics, Business Intelligence and/or other Industry 4.0 technologies in a forecasting system for complex, multi-faceted economic processes in such a way as to reduce the scale of the impact of the paradox of the self-fulfilling prophecy and to increase the scale of the paradox of not allowing a forecasted crisis to occur due to pre-emptive anti-crisis measures applied?
What do you think about the involvement of artificial intelligence in combination with Data Science, Big Data Analytics, Business Intelligence and/or other Industry 4.0 technologies to develop advanced, complex predictive models for estimating current and forward-looking levels of systemic financial risks, economic risks, debt of the state's public finance system, systemic credit risks of commercially operating financial institutions and economic entities, forecasting trends in economic developments and predicting future financial and economic crises?
What do you think about this topic?
What is your opinion on this subject?
Please respond,
I invite you all to discuss,
Thank you very much,
Warm regards,
Dariusz Prokopowicz