Recently, I did some research work on predicting the efficiency limit of perovskite solar cells [Appl. Phys. Lett. 106, 221104 (2015) http://dx.doi.org/10.1063/1.4922150]. I also added some points in wikipedia [https://en.wikipedia.org/wiki/Perovskite_solar_cell#Physics].

According to the detailed balance model by Shockley and Queisser, the maximal output power of a solar cell can be achieved if the following set of hypotheses are fulfilled:

(1)     Carrier populations obey Maxwell-Boltzman statistics. Particularly, the quasi-Fermi levels of electrons and holes are uniformly split through the cell and the split equals the applied voltage. The assumption is reasonable if mobility of photocarriers (electrons and holes) are sufficiently large. Regarding perovskite materials, charge carrier mobility as high as 10 cm2 V-1 s-1 has been observed.

(2)     Radiative band-to-band (bimolecular) recombination mechanism is the only one existing. Nonradiative recombination, such as Auger recombination, trap (defect) assisted recombination, etc, are ignorable. Different from silicon with an indirect bandgap, perovskite material has a direct band gap. Therefore, Auger recombination is sufficiently suppressed, which has been verified in recent experimental results. Moreover, light emission from perovskite solar cells is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of organic solar cells.

(3)     Internal conversion efficiency reaches 100%. When one photon is absorbed, it produces one electron-hole pair; and when one electron-hole pair recombines, it produces one photon. For perovskite solar cells, the internal quantum efficiency approaches 100%.

(4)     Photon recycling effect cccurs in the cell. Although a photon will be created by one electron-hole pair recombination during the radiative recombination process, the photon can be reabsorbed at a different spatial location in the cell, which creates a new electron-hole pair. Designs of light trapping and angular restriction can improve the photon reabsorption process and thus maximize solar cell efficiency. For perovskite solar cells, the existing of photon recycling effect is still unclear.

From my personal point of view, points 1—3 now are clear. The unclear point is point 4. We knew that photon recycling effect has been confirmed in GaAs solar cells recently. Did the effect exist in perovskite solar cells? How to confirm it? I’d like to listen to your opinions.

Similar questions and discussions