Suppose we conveniently extended the standard concept of cellular automaton to include
graphs and state-spaces Q of any cardinality and that the transition function F belonged to a certain adequate notion of "(hyper)computable function". We call this a hyper-cellular automaton HCA.
Consider the postulate: the universe can be described by a HCA with transition function F.
We cannot escape the problem of the initial condition Q_0. In the Wolfram Classification random initial conditions are considered. Hence the expediency for some topology or measure on Q.
Q will include for instance the usual sheaves (principle bundles and connections) considered in the standard model. It will also include other aspects to account for quantum gravity, consciousness, emergent biological complexity, etc.
It is an empirical fact that this HCA must be WC4 "complex patterns of localised structures" in the Wolfram Classification.
A major problem is the goal of reverse engineering F is that we do not have evolutions for other initial conditions at our disposal neither for the universe nor for subsystems of the universe. For physics at least a lot of locality and invariance hypotheses come in to play to justify the universality of experimental conclusions. The chemistry we observe on earth must also be that of the most distant star.
For biology the situation is drastically different. My question is: how can biology go beyond being a merely descriptive science as contrasted with fundamental physics ?
Biology seems to be mainly a "reverse engineering" affair. But it is also important
to have detailed, mathematically precise models - perhaps using HCAs - that can be used to test hypotheses and perform simulations.
Molecular biology suggests a new paradigm for software-hardware, a fluid mobile computer with essentially interconnected parts. A key characteristic is that information operations are tied to material and energetic constraints.
Also we must focus on ecosystems (the analogue of the cell ? ) rather than individual species. What about the idea of a "natural internet" (via horizontal gene transfer, etc.) ?