11 November 2015 6 5K Report

By the 1950s, when Yang–Mills theory, also known as non-abelian gauge

theory, was discovered, it was already known that Quantum Electrodynamics (QED) gives an extremely accurate account of electromagnetic fields and forces. So it was natural to inquire whether non-abelian gauge theory described other forces in nature, notably the weak force and the strong or nuclear force. The massless nature of classical Yang–Mills waves was a

serious obstacle to applying Yang–Mills theory to the other forces, for the weak and nuclear forces are short range and many of the particles are massive. Hence these phenomena did not appear to be associated with long-range fields describing massless particles. In the 1960s and 1970s, physicists overcame these obstacles to the physical interpretation of non-abelian gauge theory. In the case of the weak force, this was accomplished by the Glashow–Salam– Weinberg electroweak theory. By elaborating the theory with an additional “Higgs field,” one avoided the massless nature of classical Yang–Mills waves. The solution to the problem of massless Yang–Mills fields for the strong interactions has a completely different nature. That

solution did not come from adding fields to Yang–Mills theory, but by discovering a remarkable property of the quantum Yang–Mills theory itself, called “asymptotic freedom”.Asymptotic freedom, together with other experimental and theoretical discoveries made in the 1960s and 1970s involving the symmetries and high-energy behaviour of the strong

interactions, made it possible to describe the nuclear force by a non-abelian gauge theory in which the gauge group is G = SU(3). The non-abelian gauge theory of the strong force is called Quantum Chromodynamics (QCD). But classical non-abelian gauge theory is very different from the observed world of strong interactions; for QCD to describe the strong force successfully, it must have at the quantum level the mass-gap and related color confinement

properties. Both experiment—since QCD has numerous successes in confrontation with experiment—and computer simulations carried out since the late 1970s, have given strong encouragement that QCD does have the properties of mass-gap and color confinement cited above. But they are not fully understood theoretically. In the attached link, http://dx.doi.org/10.13140/RG.2.1.1637.3205 the theoretical understanding of mass-gap and related color confinement property have been provided during mathematical calculation of the gluon emission cross section for QCD process by taking over the corresponding results from closely related aforesaid QED process under the assumption that color interactions in perturbative sector are “a copy of electromagnetic interactions.

As such, the direct mathematical calculation for QCD process has been

avoided because the presence of point-like Dirac particles inside hadrons through Bjorken scaling and the carriage of a substantial portion of proton’s momentum by neutral partons, as revealed by the ‘asymptotic freedom’ based analysis of the data on deep inelastic scattering of leptons by nucleons, do not constitute direct evidence that the aforesaid Dirac particles and neutral partons can be identified with quarks and gluons respectively for making QCD the correct physical theory.

dx.doi.org/10.13140/RG.2.1.1637.3205

Similar questions and discussions