Of 54 atoms in my structure (a solute and a water molecule) in an implicit solvent (water), using Gaussian 09, I performed a high level DFT geometry optimisation: wb97xd/6-311++g(2df,2p). Using the optimised structure I am trying to perform an MP2/aug-cc-pVTZ single point energy calculation. It is taking a very long time to complete (16 cores on 1 node and I'm still waiting after 3 days). I have included scf=(qc,maxcycle=1024).
My question; given the output below does it look as though the calculation will ever complete? Or, is it 'circling the drain'?
I would also like to know what "QCLLim is confused" means.
Many thanks
Anthony
Iteration 1 A*A^-1 deviation from unit magnitude is 2.78D-15 for 295.
Iteration 1 A*A^-1 deviation from orthogonality is 3.09D-15 for 2663 2446.
Iteration 1 A^-1*A deviation from unit magnitude is 2.66D-15 for 1526.
Iteration 1 A^-1*A deviation from orthogonality is 5.12D-08 for 2296 2294.
Iteration 2 A*A^-1 deviation from unit magnitude is 2.55D-15 for 280.
Iteration 2 A*A^-1 deviation from orthogonality is 2.16D-15 for 3291 32.
Iteration 2 A^-1*A deviation from unit magnitude is 6.66D-16 for 236.
Iteration 2 A^-1*A deviation from orthogonality is 2.68D-16 for 2588 970.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Minimum is close to point 3 DX= 3.60D-02 DF= -1.61D-04 DXR= 4.30D-02 DFR= 1.85D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
LinEq1: Iter= 0 NonCon= 1 RMS=1.79D-05 Max=1.27D-03 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=5.25D-06 Max=3.44D-04 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=1.79D-06 Max=8.20D-05 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=3.51D-07 Max=2.27D-05 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=1.63D-07 Max=9.52D-06 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=4.58D-08 Max=2.70D-06 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=2.06D-08 Max=1.19D-06 NDo= 1
LinEq1: Iter= 7 NonCon= 0 RMS=1.04D-08 Max=2.30D-07 NDo= 1
Linear equations converged to 5.524D-08 5.524D-07 after 7 iterations.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -1.07D-03 DF= -1.41D-10 DXR= 1.07D-03 DFR= 1.14D-06 which will be used.
LinEq1: Iter= 0 NonCon= 1 RMS=4.41D-08 Max=2.39D-06 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=2.65D-08 Max=2.19D-06 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=1.14D-08 Max=2.49D-07 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=6.58D-09 Max=2.22D-07 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=4.14D-09 Max=1.91D-07 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.50D-09 Max=5.61D-08 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=1.08D-09 Max=2.73D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 1 RMS=1.14D-09 Max=1.38D-08 NDo= 1
LinEq1: Iter= 8 NonCon= 1 RMS=1.18D-09 Max=2.65D-08 NDo= 1
LinEq1: Iter= 9 NonCon= 1 RMS=1.26D-09 Max=3.05D-08 NDo= 1
LinEq1: Iter= 10 NonCon= 1 RMS=1.18D-09 Max=1.61D-08 NDo= 1
LinEq1: Iter= 11 NonCon= 1 RMS=6.90D-10 Max=1.29D-08 NDo= 1
LinEq1: Iter= 12 NonCon= 1 RMS=5.19D-10 Max=8.95D-09 NDo= 1
LinEq1: Iter= 13 NonCon= 1 RMS=5.84D-10 Max=8.23D-09 NDo= 1
LinEq1: Iter= 14 NonCon= 1 RMS=4.89D-10 Max=5.58D-09 NDo= 1
LinEq1: Iter= 15 NonCon= 1 RMS=5.05D-10 Max=6.42D-09 NDo= 1
LinEq1: Iter= 16 NonCon= 1 RMS=3.51D-10 Max=3.42D-09 NDo= 1
LinEq1: Iter= 17 NonCon= 0 RMS=2.44D-10 Max=2.83D-09 NDo= 1
Linear equations converged to 3.476D-10 3.476D-09 after 17 iterations.
LinEq1: Iter= 0 NonCon= 1 RMS=1.88D-08 Max=2.20D-07 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=5.39D-09 Max=8.12D-08 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=4.73D-09 Max=6.98D-08 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=2.82D-09 Max=3.38D-08 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=1.95D-09 Max=2.85D-08 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.80D-09 Max=2.01D-08 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=1.08D-09 Max=1.82D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 1 RMS=6.16D-10 Max=7.13D-09 NDo= 1
LinEq1: Iter= 8 NonCon= 1 RMS=5.44D-10 Max=6.63D-09 NDo= 1
LinEq1: Iter= 9 NonCon= 1 RMS=6.08D-10 Max=7.66D-09 NDo= 1
LinEq1: Iter= 10 NonCon= 1 RMS=5.10D-10 Max=7.21D-09 NDo= 1
LinEq1: Iter= 11 NonCon= 1 RMS=3.96D-10 Max=4.01D-09 NDo= 1
LinEq1: Iter= 12 NonCon= 1 RMS=2.71D-10 Max=3.59D-09 NDo= 1
LinEq1: Iter= 13 NonCon= 1 RMS=2.04D-10 Max=2.27D-09 NDo= 1
LinEq1: Iter= 14 NonCon= 1 RMS=2.36D-10 Max=2.26D-09 NDo= 1
LinEq1: Iter= 15 NonCon= 1 RMS=2.44D-10 Max=2.76D-09 NDo= 1
LinEq1: Iter= 16 NonCon= 1 RMS=2.08D-10 Max=2.57D-09 NDo= 1
LinEq1: Iter= 17 NonCon= 0 RMS=1.96D-10 Max=2.10D-09 NDo= 1
Linear equations converged to 2.220D-10 2.220D-09 after 17 iterations.
QCLLim is confused: Bigger=T Turned=T
NLin= 3 IMin12= 1 2 I12= 0 2 IX= 1 XLMin= 0.000D+00 XLMax= 0.000D+00
X = 0.000D+00 1.000D+00 2.000D+00
DE= 0.000D+00 5.184D-11 8.322D-10
LinEq1: Iter= 0 NonCon= 1 RMS=1.15D-08 Max=1.38D-07 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=6.34D-09 Max=1.01D-07 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=4.57D-09 Max=7.15D-08 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=2.12D-09 Max=3.09D-08 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=2.10D-09 Max=2.33D-08 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.28D-09 Max=1.45D-08 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=7.91D-10 Max=1.05D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 1 RMS=5.56D-10 Max=6.68D-09 NDo= 1
LinEq1: Iter= 8 NonCon= 1 RMS=4.93D-10 Max=7.23D-09 NDo= 1
LinEq1: Iter= 9 NonCon= 1 RMS=6.15D-10 Max=8.48D-09 NDo= 1
LinEq1: Iter= 10 NonCon= 1 RMS=7.11D-10 Max=8.51D-09 NDo= 1
LinEq1: Iter= 11 NonCon= 1 RMS=5.40D-10 Max=7.07D-09 NDo= 1
LinEq1: Iter= 12 NonCon= 1 RMS=4.21D-10 Max=5.07D-09 NDo= 1
LinEq1: Iter= 13 NonCon= 1 RMS=3.13D-10 Max=3.44D-09 NDo= 1
LinEq1: Iter= 14 NonCon= 1 RMS=2.42D-10 Max=2.47D-09 NDo= 1
LinEq1: Iter= 15 NonCon= 1 RMS=2.01D-10 Max=2.45D-09 NDo= 1
LinEq1: Iter= 16 NonCon= 1 RMS=1.85D-10 Max=2.36D-09 NDo= 1
LinEq1: Iter= 17 NonCon= 1 RMS=1.64D-10 Max=1.52D-09 NDo= 1
LinEq1: Iter= 18 NonCon= 0 RMS=1.09D-10 Max=1.34D-09 NDo= 1
Linear equations converged to 1.381D-10 1.381D-09 after 18 iterations.
Restarting incremental Fock formation.
LinEq1: Iter= 0 NonCon= 1 RMS=6.06D-08 Max=6.90D-07 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=1.27D-08 Max=1.37D-07 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=4.40D-09 Max=6.68D-08 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=2.64D-09 Max=3.13D-08 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=1.95D-09 Max=2.42D-08 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.71D-09 Max=2.54D-08 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=1.21D-09 Max=1.66D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 1 RMS=7.63D-10 Max=1.13D-08 NDo= 1
LinEq1: Iter= 8 NonCon= 0 RMS=5.20D-10 Max=6.37D-09 NDo= 1
Linear equations converged to 7.330D-10 7.330D-09 after 8 iterations.
Search did not lower the energy significantly.
No lower point found -- try reversing direction.
Restarting incremental Fock formation.
Search did not lower the energy significantly.
No lower point found -- switch to scaled steepest descent.
Restarting incremental Fock formation.
Minimum is close to point 10 DX= 0.00D+00 DF= 0.00D+00 DXR= 0.00D+00 DFR= 0.00D+00 which will be used.
LinEq1: Iter= 0 NonCon= 1 RMS=7.08D-08 Max=7.87D-07 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=1.34D-08 Max=1.47D-07 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=4.89D-09 Max=6.60D-08 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=2.35D-09 Max=2.87D-08 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=1.74D-09 Max=2.46D-08 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.27D-09 Max=1.70D-08 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=8.90D-10 Max=1.12D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 1 RMS=7.69D-10 Max=1.18D-08 NDo= 1
LinEq1: Iter= 8 NonCon= 1 RMS=8.62D-10 Max=1.07D-08 NDo= 1
LinEq1: Iter= 9 NonCon= 1 RMS=1.01D-09 Max=1.30D-08 NDo= 1
LinEq1: Iter= 10 NonCon= 0 RMS=7.41D-10 Max=8.17D-09 NDo= 1
Linear equations converged to 8.552D-10 8.552D-09 after 10 iterations.
Restarting incremental Fock formation.
Search did not lower the energy significantly.
No lower point found -- try reversing direction.