The following statement is well known in distributive lattices (D, 0, 1, ., +):
(1) Let F be a filter disjoint from an ideal I. Then there exists a prime filter F’ extending F and disjoint from I.
Usually the proof of (1) follows by an application of Zorn Lemma. But then the proof yields a stronger version:
(2) Let F be a filter disjoint from an ideal I. Then there exists a prime filter F’ extending F and disjoint from I and for every x not in F’ there exists y in F’ such that x.y is in I.
I am interested if (1) and (2) are equivalent (or not ) in ZF. Any references?