Jiang, X., Bian, G. B., & Tian, Z. (2019). Removal of Artifacts from EEG Signals: A Review. Sensors (Basel, Switzerland), 19(5), 987. https://doi.org/10.3390/s19050987
Steyrl, D., Krausz, G., Koschutnig, K., Edlinger, G., & Müller-Putz, G. R. (2018). Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF). Brain topography, 31(1), 129–149. https://doi.org/10.1007/s10548-017-0606-7
Li, Y., Wang, P. T., Vaidya, M. P., Flint, R. D., Liu, C. Y., Slutzky, M. W., & Do, A. H. (2021). Electromyogram (EMG) Removal by Adding Sources of EMG (ERASE)-A Novel ICA-Based Algorithm for Removing Myoelectric Artifacts From EEG. Frontiers in neuroscience, 14, 597941. https://doi.org/10.3389/fnins.2020.597941
Liu, Q., Liu, A., Zhang, X., Chen, X., Qian, R., & Chen, X. (2019). Removal of EMG Artifacts from Multichannel EEG Signals Using Combined Singular Spectrum Analysis and Canonical Correlation Analysis. Journal of healthcare engineering, 2019, 4159676. https://doi.org/10.1155/2019/4159676