Limits underlie everything in calculus and analysis. To see this, simply look at some old textbooks that use infinitesimals (I do not mean the infinitesimals from non-standard analysis that require hyperreals) or spend some time programming functions for numerical integration or calculus operations for some CAS in general (or look at the content of a real analysis textbook). You can’t actually understand anything much in calculus without understanding limits. Yet your standard textbook introduces them in chapter two, reintroduces them somewhat when defining Riemann integrals (and then again with improper integrals), and of course with sequences and series. But apart from that 2nd chapter introduction, limits are never covered in any kind of comprehensive, detailed way; rather, they are mostly introduced to move on to differentiation and then used when needed to introduce various other components of single or multivariable calculus.
Is there a good reason for this? Is there a way to teach calculus at least somewhat via limits as the foundation they are (as in e.g., classic textbooks such as Courant’s)? Is there a good reason not to?