Artificial Intelligence (AI) and Machine Learning (ML) are two very hot buzzwords right now, and often seem to be used interchangeably.
They are not quite the same thing, but the perception that they are can sometimes lead to some confusion. So I thought it would be worth writing a piece to explain the difference.
Both terms crop up very frequently when the topic is Big Data, analytics, and the broader waves of technological change which are sweeping through our world. In short, the best answer is that:
Artificial Intelligence is the broader concept of machines being able to carry out tasks in a way that we would consider “smart”.
And, Machine Learning is a current application of AI based around the idea that we should really just be able to give machines access to data and let them learn for themselves.
Early Days Artificial Intelligence has been around for a long time – the Greek myths contain stories of mechanical men designed to mimic our own behavior. Very early European computers were conceived as “logical machines” and by reproducing capabilities such as basic arithmetic and memory, engineers saw their job, fundamentally, as attempting to create mechanical brains.
As technology, and, importantly, our understanding of how our minds work, has progressed, our concept of what constitutes AI has changed. Rather than increasingly complex calculations, work in the field of AI concentrated on mimicking human decision making processes and carrying out tasks in ever more human ways.
More information about this fallowed this link: https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#3c4fccbd2742
Over the past few years, the term “deep learning” has firmly worked its way into business language when the conversation is about Artificial Intelligence (AI), Big Data and analytics. And with good reason – it is an approach to AI which is showing great promise when it comes to developing the autonomous, self-teaching systems which are revolutionizing many industries.
Deep Learning is used by Google in its voice and image recognition algorithms, by Netflix and Amazon to decide what you want to watch or buy next, and by researchers at MIT to predict the future. The ever-growing industry which has established itself to sell these tools is always keen to talk about how revolutionary this all is. But what exactly is it? And is it just another fad being used to push “old fashioned” AI on us, under a sexy new label?
In my last article I wrote about the difference between AI and Machine Learning (ML). While ML is often described as a sub-discipline of AI, it’s better to think of it as the current state-of-the-art – it’s the field of AI which today is showing the most promise at providing tools that industry and society can use to drive change.
In turn, it’s probably most helpful to think of Deep Learning as the cutting-edge of the cutting-edge. ML takes some of the core ideas of AI and focuses them on solving real-world problems with neural networks designed to mimic our own decision-making. Deep Learning focuses even more narrowly on a subset of ML tools and techniques, and applies them to solving just about any problem which requires “thought” – human or artificial.
How does it work?
https://www.forbes.com/sites/bernardmarr/2016/12/08/what-is-the-difference-between-deep-learning-machine-learning-and-ai/#3f3ae21526cf