To run the code, simply call the `seirModel()` function. You can modify the parameter values (`beta`, `gamma`, `sigma`, `N`, `I0`, `E0`, `R0`, `tspan`) to customize the simulation according to your requirements.
Note: The code uses the `ode45` function in MATLAB's Ordinary Differential Equation (ODE) solver to solve the SEIR equations numerically. Make sure you have the MATLAB ODE toolbox installed.
SEIR model implemented in Mathematica:
```mathematica
(* SEIR Model for Infectious Diseases *)
(* Parameters *)
beta = 0.2; (* Transmission rate *)
gamma = 0.1; (* Recovery rate *)
sigma = 0.05; (* Incubation rate *)
N = 1000; (* Total population *)
I0 = 10; (* Initial number of infected individuals *)
E0 = 5; (* Initial number of exposed individuals *)
R0 = 2; (* Initial number of recovered individuals *)
tmax = 50; (* Maximum time *)
(* Solve the differential equations *)
sol = NDSolve[{S'[t] == -beta*S[t]*I[t]/N,
E'[t] == beta*S[t]*I[t]/N - sigma*E[t],
I'[t] == sigma*E[t] - gamma*I[t],
R'[t] == gamma*I[t], S[0] == N - I0 - E0 - R0,
E[0] == E0, I[0] == I0, R[0] == R0}, {S, E, I, R}, {t, 0, tmax}];
To run the code, simply evaluate the entire Mathematica code block. You can modify the parameter values (`beta`, `gamma`, `sigma`, `N`, `I0`, `E0`, `R0`, `tmax`) to customize the simulation as per your requirements.
The code uses `NDSolve` to numerically solve the SEIR equations. The results are then plotted using `Plot`, displaying the population dynamics over time.