Let me recall that, for a positive integer n, Cut(n) is the statement that, for each sequence of n-element sets, the union of all sets of this sequence is at most countable. Cut(fin) is the statement that countable unions of finite sets are at most countable. I am unable to deduce whether it is true in ZF that if Cut(n) holds for each positive integer n, then Cut(fin) also holds. Perhaps, there exists a mathematician who knows a model for ZF in which Cut(fin) fails and, simultaneously, Cut(n) holds for each positive integer n. I would be grateful for any helpful hint to give a satisfactory answer to my question. Regards, Eliza Wajch