Length/height-for-age. The standard for linear growth has a part based on length (length-for-age, 0 to 24 months) and another on height (height-for-age, 2 to 5 years). The two parts were constructed using the same model but the final curves reflect the average difference between recumbent length and standing height. By design, children between 18 and 30 months in the cross-sectional component of
the MGRS had both length and height measurements taken. The average difference between the two measurements in this set of 1625 children was 0.73 cm. To fit a single model for the whole age range, 0.7 cm was therefore added to the cross-sectional height values before merging them with the longitudinal sample's length data. After the model was fitted, the median curve was shifted back downwards by 0.7 cm for ages above two years, and the coefficient of variation curve adjusted to the new median values to construct the height-for-age growth curves. The same power transformation of age was applied to stretch the age scale for each of the sexes before fitting cubic splines to generate
their respective growth curves. The boys' curves required a model with higher degrees of freedom to fit both the median and coefficient of variation curves. The data for both sexes followed the normal distribution.
Weight-for-age. The weights of the longitudinal and cross-sectional samples were merged without any adjustments and a single model was fitted to generate one continuous set of curves constituting each sex-specific weight-for-age standard. The same power transformation was applied to both boys' and girls' age before fitting the curve construction model. The weight data for both sexes were skewed, so
in specifying the model, the parameter related to skewness was fitted in addition to the median and the approximate coefficient of variation. In modelling skewness the girls' curves required more degrees of freedom to fit a curve for this parameter.
Weight-for-length/height. The construction of the weight-for-length (45 to 110 cm) and weight-forheight (65 to 120 cm) standards followed a procedure similar to that applied to construct the length/height-for-age standards. That is, to fit a single model, 0.7 cm was added to the cross-sectional height values, and after the model was fitted, the weight-for-length centile curves in the length interval 65.7 to 120.7 cm were shifted back by 0.7 cm to derive the weight-for-height standards corresponding to the height range 65 cm to 120 cm. The lower limit of the weight-for-length standards (45 cm) was chosen to cover up to approximately -2 SD girls' length at birth. The upper limit for the weight-forheight standards was influenced by the need to accommodate the tallest children at age 60 months, that is, 120 cm is approximately +2 SD boys' height-for-age at 60 months. The overlap between the upper end of the weight-for-length standards and the lower end of the weight-for-height standards is intended to facilitate their application in severely undernourished populations and emergency settings.
There was no evidence that a length/height transformation similar to that described for age was required for constructing the weight-for-length/height standards. The modelling of the median and variance curves followed the procedure described for the first two standards. Results from the final model for girls' weight-for-length/height suggested the need to investigate potential improvements in the curves by modelling kurtosis. Adjustment for kurtosis, however had a negligible impact on the
final centiles. Therefore, considering that modelling the fourth parameter would increase complexity in application of the standards and create inconsistency between the sexes, the final curves were generated without adjusting for kurtosis. The degrees of freedom for the median and variance curves varied between the boys' and girls' standards. The fact that the weight-for-length/height indicator
combines different velocities for the two measurements involved (weight and length/height) at overlapping ages likely explains the slight wiggle in the final WHO standards (for both boys and girls) as also observed in other references.
Body mass index-for-age. Body mass index is the ratio weight (in kg)/recumbent length or standing height (in m2). To address the difference between length and height, the approach used for constructing the BMI-for-age standards was different from that described for length/height-for-age. Because BMI is a ratio with squared length or height in the denominator, adding 0.7 cm to the height values and backtransforming them after fitting was not feasible. The solution adopted was to construct the standards for the younger and the older children separately based on two sets of data with an overlapping range of ages below and above 24 months. To construct the BMI-for-age standard based on length (0 to 2 years), the longitudinal sample's length data and the cross-sectional sample's height data (18 to 30 months) were combined after adding 0.7 cm to the height values. Analogously, to construct the standard from 2 to 5 years, the cross-sectional sample's height plus the longitudinal sample's length data (18 to 24 months) were combined after subtracting 0.7 cm from the length values. Thus, a common set of data from 18 to 30 months was used to generate the BMI standards for the younger and the older children. The resulting disjunction between the two standards thus in essence reflects the 0.7 cm difference between length and height. This does not mean, however, that a child at a specific age will have the same length- and height-based BMI-for-age z-score as this is mathematically impossible given the nature of the BMI ratio. An age power transformation as described for the other age-based standards was required before constructing the length-based BMI-for-age curves. No such transformation was necessary for the height-based BMI-for-age. The WHO length- and height-based BMI-for-age standards do not overlap, i.e. the length-based interval ends at 730 days and the height-based interval starts at 731 days. Cubic
spline fitting was achieved with variable degrees of freedom for the length- versus height-based standards, and also for the boys' versus girls' final curves.
For more on this topic, please see the publication contained in the following link: