Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure
Benjamin Boutin1, , ,
Frédéric Coquel2, and
Philippe G. LeFloch3,
1.Univ. Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
2.Centre de Mathématique Appliquées, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France
3.Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scientifique, Sorbonne Université, 75258 Paris, France
* Corresponding author: Benjamin Boutin
Received: October 2020
Revised: January 2021
Early access: February 2021
Published: June 2021
The three authors were partially supported by the Innovative Training Networks (ITN) grant 642768 (ModCompShock), and by the Centre National de la Recherche Scientifique (CNRS)
Abstract
In the first part of this series, an augmented PDE system was introduced in order to couple two nonlinear hyperbolic equations together. This formulation allowed the authors, based on Dafermos's self-similar viscosity method, to establish the existence of self-similar solutions to the coupled Riemann problem. We continue here this analysis in the restricted case of one-dimensional scalar equations and investigate the internal structure of the interface in order to derive a selection criterion associated with the underlying regularization mechanism and, in turn, to characterize the nonconservative interface layer. In addition, we identify a new criterion that selects double-waved solutions that are also continuous at the interface. We conclude by providing some evidence that such solutions can be non-unique when dealing with non-convex flux-functions.Keywords:Hyperbolic conservation law, coupling technique, Riemann problem, self-similar approximation, resonant effect. Mathematics Subject Classification: Primary: 35L65, 35D40.Citation: Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16(2): 283-315. doi: 10.3934/nhm.2021007📷
FullText(HTML)
Related Papers
Cited by
References
[1] Ad imurthi, S. Mishra and G. D. V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783-837. doi: 10.1142/S0219891605000622.📷 📷 📷 [2] Ad imurthi, S. Mishra and G. D. V. Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes, Netw. Heterog. Media, 2 (2007), 127-157. doi: 10.3934/nhm.2007.2.127.📷 📷 📷 [3] Ad imurthi, S. Mishra and G. D. V. Gowda, Conservation law with the flux function discontinuous in the space variable. Ⅱ. Convex-concave type fluxes and generalized entropy solutions, J. Comput. Appl. Math., 203 (2007), 310-344. doi: 10.1016/j.cam.2006.04.009.📷 📷 📷 [4] A. Ambroso, C. Chalons, F. Coquel and T. Galié, Interface model coupling via prescribed local flux balance, ESAIM Math. Model. Numer. Anal., 48 (2014), 895-918. doi: 10.1051/m2an/2013125.📷 📷 📷 [5] B. Andreianov, Dissipative coupling of scalar conservation laws across an interface: theory and applications, in Hyperbolic Problems: Theory, Numerics and Applications, Vol. 17 of Ser. Contemp. Appl. Math. CAM, World Sci. Publishing, Singapore, 1 (2012), 123–135. doi: 10.1142/9789814417099_0009.📷 📷 📷 [6] B. Andreianov, The semigroup approach to conservation laws with discontinuous flux, in Hyperbolic Conservation Laws and Related Analysis with Applications, Vol. 49 of Springer Proc. Math. Stat., Springer, Berlin, Heidelberg, (2014), 1–22. doi: 10.1007/978-3-642-39007-4_1.📷 📷 📷 [7] B. Andreianov, New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux, in CANUM 2014 - 42e Congrès National d'Analyse Numérique Vol. 50 of ESAIM Proc. Surveys, EDP Sci., Les Ulis, (2015), 40–65. doi: 10.1051/proc/201550003.📷 📷 📷 [8] B. Andreianov and C. Cancès, On interface transmission conditions for conservation laws with discontinuous flux of general shape, J. Hyperbolic Differ. Equ., 12 (2015), 343-384. doi: 10.1142/S0219891615500101.📷 📷 📷 [9] B. Andreianov, K. H. Karlsen and N. H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux, Netw. Heterog. Media, 5 (2010), 617-633. doi: 10.3934/nhm.2010.5.617.📷 📷 📷 [10] B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of
-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4.📷 📷 📷 [11] B. Andreianov and D. Mitrović, Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 1307–1335. doi: 10.1016/j.anihpc.2014.08.002.📷 📷 📷 [12] B. Andreianov and N. Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes, Discrete Contin. Dyn. Syst., 32 (2012), 1939-1964. doi: 10.3934/dcds.2012.32.1939.📷 📷 📷 [13] E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253-265. doi: 10.1017/S0308210500003863.📷 📷 📷 [14] C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations, 4 (1979), 1017-1034. doi: 10.1080/03605307908820117.📷 📷 📷 [15] M. Benyahia, C. Donadello, N. Dymski and M. D. Rosini, An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 48-90. doi: 10.1007/s00030-018-0539-1.📷 📷 📷 [16] C. Berthon, M. Bessemoulin-Chatard, A. Crestetto and F. Foucher, A Riemann solution approximation based on the zero diffusion-dispersion limit of Dafermos reformulation type problem, Calcolo, 56 (2019), 28-60. doi: 10.1007/s10092-019-0325-4.📷 📷 📷 [17] C. Berthon, F. Coquel and P. G. LeFloch, Why many theories of shock waves are necessary: Kinetic relations for non-conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1-37. doi: 10.1017/S0308210510001009.📷 📷 📷 [18] B. Boutin, C. Chalons and P.-A. Raviart, Existence result for the coupling problem of two scalar conservation laws with Riemann initial data, Math. Models Methods Appl. Sci., 20 (2010), 1859-1898. doi: 10.1142/S0218202510004817.📷 📷 📷 [19] B. Boutin, F. Coquel and P. G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. Ⅰ: Self-similar diffusion for thin interfaces, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 921-956. doi: 10.1017/S0308210510001459.📷 📷 📷 [20] B. Boutin, F. Coquel and P. G. LeFloch, Coupling techniques for nonlinear hyperbolic equations. Ⅲ. The well–balanced approximation of thick interfaces, SIAM J. Numer. Anal., 51 (2013), 1108-1133. doi: 10.1137/120865768.📷 📷 📷Show all references 📷
Access History
Amount of accessAbstract Views, PDF
Nonlinear Hyperbolic Systems - Mathematical Institute
The solution of non-linear hyperbolic equation systems by the finite element method
R. Löhner, K. Morgan, O. C. Zienkiewicz
First published: November 1984
https://doi.org/10.1002/fld.1650041105
Citations: 238
📷PDF
Tools
Share
Abstract The difficulties experienced in the treatment of hyperbolic systems of equations by the finite element method (or other) spatial discretization procedures are well known. In this paper a temporal discretization precedes the spatial one which in principle is considered along the characteristics to achieve a self adjoint form. By a suitable expansion, the original co-ordinates are preserved and combined with the use of a standard Galerkin process to achieve an accurate discretization. It is shown that the process is equivalent to the Taylor-Galerkin methods of Donea.17Several examples illustrate the accuracy and efficiency attainable in such problems as transport, shallow water equations, transonic flow etc.
References
Solution of the hyperbolic mild‐slope equation using the finite volume methodJ. Bokaris, K. AnastasiouInternational Journal for Numerical Methods in Fluids
The Runge–Kutta control volume discontinuous finite element method for systems of hyperbolic conservation lawsDawei Chen, Xijun Yu, Zhangxin ChenInternational Journal for Numerical Methods in Fluids
High order implicit collocation method for the solution of two‐dimensional linear hyperbolic equationMehdi Dehghan, Akbar MohebbiNumerical Methods for Partial Differential Equations
A numerical method for solving the hyperbolic telegraph equationMehdi Dehghan, Ali ShokriNumerical Methods for Partial Differential Equations