If you work in real analysis  see the formulation B).

By   $\mathbb{D} $  and  $\mathbb{T} $ we denote  the unit disk and the unit circle   respectively.

A)For $p\in \mathbb{D} $, let $H(p)$ denote the family of all harmonics maps

$f$ from $\mathbb{D}$ into itself with $f(0)=p$ which are conformal at

$0$.

B)   Set $L(p)= \sup \{ |f'(0)|: f\in H(p) \}$ and $K(p)=\frac{L(p)}{1-|p|^2}$.

Find $K(p)$. It is known that $1 \leq K(p)\leq \frac{4}{\pi}$ and $K(0)= 1$.

We write $f(t)$ instead of $f(e^{it})$.

Let $Q(p)$ denote the family of all homeomorphisms (more generally weak)

of $\mathbb{T}$ onto itself such that $a_0(f)=\frac{1}{2\pi}\int_0

^{2\pi}f(t) dt =p$

and $b_1(f)=  \int_0 ^{2\pi}f(t) e^{it} dt =0$. Set $a_1(f)= \frac{1}{2\pi} \int_0

^{2\pi}f(t) e^{-it} dt$, $\bar{L}(p)= \sup \{ |a_1(f)|: f \in Q(p) \}$

and $\bar{K}(p)=\frac{L(p)}{1-|p|^2}$.

It seems that using the RCK-theorem we can show $\bar{K}(p)=K(p)$ and that $\bar{K}(p)>1$ in general.

Let $P_n$ be the polygonal line defined by points $(0,1), (\frac{\pi}{2}-1/n,1), (\frac{\pi}{2},0),(\pi - 1/n,1/n) $ and $(\pi, - 1)$,

and $x_n$  even  function which equals $P_n$ on $[0,\pi]$ and $y_n$ odd  function such that $y_n=\sqrt{1-x_n^2}$ on $[0,\pi/2]$ and $y_n=-\sqrt{1-x_n^2}$ on $[\pi/2,\pi]$.

Set $z_n=x_n +i y_n$. Check that $a_0(z_n)=1/2 +o(1)$ and

$a_1(z_n)= 2/\pi$.

Since $y_n$ is odd, $a_1(z_n)= a_1(x_n)$ and $\pi a_1(x_n)= 2

\int_0 ^{\pi/2} \cos t + o(1)= 2+ o(1) $ and therefore $a_1(z_n)= 2/\pi$.

For $p=1/2$ we have $1-p^2=1-1/4 = 3/4$ and $\bar{K}(1/2)\geq

c:=  \frac{2}{\pi} \frac{4}{3}$.

But $c1$?

More Miodrag Mateljević's questions See All
Similar questions and discussions