How to find the metrics for cross folds validation process.
For example, I have the following data.
clf=classificationModel
MyX=Feature-Vector
MyY=targets
I followed below syntax for classification process:
y_pred = cross_val_predict(clf,MyX,MyY,cv=10)
Metrics calculation for cross-fold validation, syntaxes that I followed are:
totacu=round((metrics.accuracy_score(MyY,y_pred)*100),3)
totMisacu=round((1-metrics.accuracy_score(MyY,y_pred))*100,3)
sensitivityVal=round((metrics.recall_score(MyY,y_pred))*100,3)
precision=round((metrics.precision_score(MyY,y_pred))*100,3);
f1score=round(2*((sensitivityVal*precision)/(sensitivityVal+precision)),2)
Please explain whether this process is correct.