I have an infinite set of functions F = {f1, f2, ...} mapping Rn into itself. I know that this set has a group structure with respect to composition, i.e. for every fi and fj in F there exist fk in F, such that fi * fj = fk (* stands for the composition). There is unique fe which corresponds to the group unity and for every fi there is inverse: fi * fj = fj * fi = fe.

I guess that this set of functions defines a Lie group, however I don't know the number of its parameters and the indeces have no topological meaning. Is there any way to find the number of parameters and to introduce them so that the family of functions F would be smooth with respect to those parameters? My first guess was to introduce a metric on F, but I don't know how to do that. Any help would be highly appreciated.

Similar questions and discussions