Let G be a Lie group and φ : G × G → G, (g, h) → ghg−1.

Let d(e,e) φ : T(e,e) (G × G) → TeG  be the differential of φ , where Tx M designate the tangent space of a differential variety M. 

My questions are:

1) how to calculate d(e,e) φ? (So we can see if it is linear or bilinear map)

2) How to prove that T(e,e)(G × G) is isomorphic to TeG × TeG ?

Similar questions and discussions