I have an EIS spectrum as illustrated in the images and I am trying to fit it by Randles equivalent circuit. My fit is not perfect but the question is which value should I use to calculate the conductivity of my solid electrolyte in the image? Usually, I was extrapolating the linear part of the curve down to X axis and take the value as resistance to calculate ionic conductivity according to the formula:

1/q=(1/R)*(l/S)

I recently read in this website that diameter of the semicircle can also be used to determine the resistance to calculate ionic conductivity. However, in my case both values are significantly different from each other. Therefore, I am looking for a more solid approach. How can I calculate ionic conductivity of my sample according to output of the Zfit? The value in the red marking is Warburg factor. Should I somehow convert it to resistance?

My sample is a lithium containing amorphous silicate thin film.

More Orhan Kıbrıslı's questions See All
Similar questions and discussions