How to build a sustainable data center based on Big Data Analytics, AI, BI and other Industry 4.0/5.0 technologies and powered by renewable and carbon-free energy sources?
If a Big Data Analytics data center is equipped with advanced generative artificial intelligence technology and is powered by renewable and carbon-free energy sources, can it be referred to as sustainable, pro-climate, pro-environment, green, etc.?
Advanced analytical systems, including complex forecasting models that enable multi-criteria, highly sophisticated, big data and information processing-based forecasts of the development of multi-faceted climatic, natural, social, economic and other processes are increasingly based on new Industry 4.0/5.0 technologies, including Big Data Analytics and machine learning, deep learning and generative artificial intelligence. The use of generative artificial intelligence technologies enables the application of complex data processing algorithms according to precisely defined assumptions and human-defined factors. The use of computerized, integrated business intelligence information systems allows real-time analysis on the basis of continuously updated data provided and the generation of reports, reports, expert opinions in accordance with the defined formulas for such studies. The use of digital twin technology allows computers to build simulations of complex, multi-faceted, prognosticated processes in accordance with defined scenarios of the potential possibility of these processes occurring in the future. In this regard, it is also important to determine the probability of occurrence in the future of several different defined and characterized scenarios of developments, specific processes, phenomena, etc. In this regard, Business Intelligence analytics should also make it possible to precisely determine the level of probability of the occurrence of a certain phenomenon, the operation of a process, the appearance of described effects, including those classified as opportunities and threats to the future development of the situation. Besides, Business Intelligence analytics should enable precise quantitative estimation of the scale of influence of positive and negative effects of the operation of certain processes, as well as factors acting on these processes and determinants conditioning the realization of certain scenarios of situation development. Cloud computing makes it possible, on the one hand, to update the database with new data and information from various institutions, think tanks, research institutes, companies and enterprises operating within a selected sector or industry of the economy, and, on the other hand, to enable simultaneous use of a database updated in this way by many beneficiaries, many business entities and/or, for example, also by many Internet users in a situation where the said database would be made available on the Internet. In a situation where Internet of Things technology is applied, it would be possible to access the said database from the level of various types of devices equipped with Internet access. The application of Blockchain technology makes it possible to increase the scale of cybersecurity of the transfer of data sent to the database and Big Data information as part of the updating of the collected data and as part of the use of the analytical system thus built by external entities. The use of machine learning and/or deep learning technologies in conjunction with artificial neural networks makes it possible to train an AI-based system to perform multi-criteria analysis, build multi-criteria simulation models, etc. in the way a human would. In order for such complex analytical systems that process large amounts of data and information to work efficiently it is a good solution to use state-of-the-art super quantum computers characterized by high computing power to process huge amounts of data in a short time. A center for multi-criteria analysis of large data sets built in this way can occupy quite a large floor space equipped with many servers. Due to the necessary cooling and ventilation system and security considerations, this kind of server room can be built underground. while due to the large amounts of electricity absorbed by this kind of big data analytics center, it is a good solution to build a power plant nearby to supply power to the said data center. If this kind of data analytics center is to be described as sustainable, in line with the trends of sustainable development and green transformation of the economy, so the power plant powering the data analytics center should generate electricity from renewable energy sources, e.g. from photovoltaic panels, windmills and/or other renewable and emission-free energy sources of such a situation, i.e., when a data analytics center that processes multi-criteria Big Data and Big Data Analytics information is powered by renewable and emission-free energy sources then it can be described as sustainable, pro-climate, pro-environment, green, etc. Besides, when the Big Data Analytics analytics center is equipped with advanced generative artificial intelligence technology and is powered by renewable and emission-free energy sources then the AI technology used can also be described as sustainable, pro-climate, pro-environment, green, etc. On the other hand, the Big Data Analytics center can be used to conduct multi-criteria analysis and build multi-faceted simulations of complex climatic, natural, economic, social processes, etc. with the aim of, for example. to develop scenarios of future development of processes observed up to now, to create simulations of continuation in the future of diagnosed historical trends, to develop different variants of scenarios of situation development according to the occurrence of certain determinants, to determine the probability of occurrence of said determinants, to estimate the scale of influence of external factors, the scale of potential materialization of certain categories of risk, the possibility of the occurrence of certain opportunities and threats, estimation of the level of probability of materialization of the various variants of scenarios, in which the potential continuation of the diagnosed trends was characterized for the processes under study, including the processes of sustainable development, green transformation of the economy, implementation of sustainable development goals, etc. Accordingly, the data analytical center built in this way can, on the one hand, be described as sustainable, since it is powered by renewable and emission-free energy sources. In addition to this, the data analytical center can also be helpful in building simulations of complex multi-criteria processes, including the continuation of certain trends of determinants influencing the said processes and the factors co-creating them, which concern the potential development of sustainable processes, e.g. economic, i.e. concerning sustainable economic development. Therefore, the data analytical center built in this way can be helpful, for example, in developing a complex, multifactor simulation of the progressive global warming process in subsequent years, the occurrence in the future of the negative effects of the deepening scale of climate change, the negative impact of these processes on the economy, but also to forecast and develop simulations of the future process of carrying out a pro-environmental and pro-climate transformation of the classic growth, brown, linear economy of excess to a sustainable, green, zero-carbon zero-growth and closed-loop economy. So, the sustainable data analytical center built in this way will be able to be defined as sustainable due to the supply of renewable and zero-carbon energy sources, but will also be helpful in developing simulations of future processes of green transformation of the economy carried out according to certain assumptions, defined determinants, estimated probability of occurrence of certain impact factors and conditions, etc. orz estimating costs, gains and losses, opportunities and threats, identifying risk factors, particular categories of risks and estimating the feasibility of the defined scenarios of the green transformation of the economy planned to be implemented. In this way, a sustainable data analytical center can also be of great help in the smooth and rapid implementation of the green transformation of the economy.
Kluczowe kwestie dotyczące problematyki zielonej transformacji gospodarki opisałem w poniższym artykule:
IMPLEMENTATION OF THE PRINCIPLES OF SUSTAINABLE ECONOMY DEVELOPMENT AS A KEY ELEMENT OF THE PRO-ECOLOGICAL TRANSFORMATION OF THE ECONOMY TOWARDS GREEN ECONOMY AND CIRCULAR ECONOMY
Article IMPLEMENTATION OF THE PRINCIPLES OF SUSTAINABLE ECONOMY DEVE...
Zastosowania technologii Big Data w analizie sentymentu, analityce biznesowej i zarządzaniu ryzykiem opisałem w artykule mego współautorstwa:
APPLICATION OF DATA BASE SYSTEMS BIG DATA AND BUSINESS INTELLIGENCE SOFTWARE IN INTEGRATED RISK MANAGEMENT IN ORGANIZATION
Article APPLICATION OF DATA BASE SYSTEMS BIG DATA AND BUSINESS INTEL...
I have described the key issues of opportunities and threats to the development of artificial intelligence technology in my article below:
OPPORTUNITIES AND THREATS TO THE DEVELOPMENT OF ARTIFICIAL INTELLIGENCE APPLICATIONS AND THE NEED FOR NORMATIVE REGULATION OF THIS DEVELOPMENT
Article OPPORTUNITIES AND THREATS TO THE DEVELOPMENT OF ARTIFICIAL I...
In view of the above, I address the following question to the esteemed community of scientists and researchers:
If a Big Data Analytics data center is equipped with advanced generative artificial intelligence technology and is powered by renewable and carbon-free energy sources, can it be described as sustainable, pro-climate, pro-environment, green, etc.?
How to build a sustainable data center based on Big Data Analytics, AI, BI and other Industry 4.0/5.0 technologies and powered by renewable and carbon-free energy sources?
How to build a sustainable data center based on Big Data Analytics, AI, BI and other Industry 4.0/5.0 and RES technologies?
What do you think about this topic?
What is your opinion on this issue?
Please answer,
I invite everyone to join the discussion,
Thank you very much,
Best wishes,
Dariusz Prokopowicz
The above text is entirely my own work written by me on the basis of my research.
In writing this text, I did not use other sources or automatic text generation systems.
Copyright by Dariusz Prokopowicz