I'm reviewing a lot of papers where the authors take a 3-D autonomous chaotic system (think Lorenz) and add a fourth variable bidirectionally coupled to the other three and then report its unusual properties which typically include lines of equilibria, initial conditions behaving like bifurcation parameters, and sometimes hyperchaos. Usually these systems have two identical Lyapunov exponents (often two zeros) and a Kaplan-Yorke dimension ~1.0 greater than the dimension determined by other methods. Thus it seems clear that the system has a constant of the motion such that it is actually 3-dimensional with an extraneous variable nonlinearly dependent on the other three. Are there algebraic or numerical methods for demonstrating this by finding a constant of the motion?

More Julien Clinton Sprott's questions See All
Similar questions and discussions