The warmth from the surface of Earth is transferred to the air just above the surface. This air wants to rise, trying to replace the cooler air above it, which results in an updraft. In certain circumstances, convection can be a type of heat transfer. As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense. The less-dense material rises, often forming a mountain or elevated area of the seafloor.
Convection currents drive the movement of Earth's rigid tectonic plates in the planet's fluid molten mantle. In places where convection currents rise up towards the crust's surface, tectonic plates move away from each other in a process known as seafloor spreading. As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense. The less-dense material rises, often forming a mountain or elevated area of the seafloor.
Convection works by areas of a liquid or gas heating or cooling greater than their surroundings, causing differences in temperature. These temperature differences then cause the areas to move as the hotter, less dense areas rise, and the cooler, denser areas sink.Convection currents carry heat from the lower mantle and core to the lithosphere. As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense. The less-dense material rises, often forming a mountain or elevated area of the seafloor. During convection, cooler water or air sinks, and warmer water or air rises. This movement causes currents. Ocean currents are like rivers of water moving through the sea. Some currents are caused by convection, while others, called surface currents, are driven by wind. Conduction directly affects air temperature only a few centimeters into the atmosphere. During the day, sunlight heats the ground, which in turn heats the air directly above it via conduction. At night, the ground cools and the heat flows from the warmer air directly above to the cooler ground via conduction.