Let us have Minkowski space-time, which must be curved so that its metric does not change, and the coordinates cease to be straight lines. How can I do that? In this matter, a hint can be found in the mathematical apparatus of quantum mechanics. Indeed, if we take the Pauli matrices and the Pauli matrices multiplied by the imaginary unit as the basis of the Lie algebra sl2(C), then the four generators of this algebra can be associated with the coordinates of Minkowski space-time not only algebraically, but also geometrically through the correspondence of the elements of the algebra sl2(C) and linear vector fields of the 4-dimensional space. Then the current lines of the vector fields of space-time become entangled in a ball, which, when untangled, surprisingly turns into Minkowski space-time.