Studies on CLA isomers in human [unlike rodents] is equivocal at the best. Please see a good review on the subject.
http://ajcn.nutrition.org/content/85/5/1203.long
Mechanisms through which CLA reduces body weight and fat deposition remain to be fully understood. Proposed antiobesity mechanisms of CLA include decreased energy/food intake and increased energy expenditure, decreased preadipocyte differentiation and proliferation, decreased lipogenesis, and increased lipolysis and fat oxidation. In summary, CLA reduces weight gain and fat deposition in rodents, while produces less significant and inconsistent effects on body weight and composition in pigs and humans
J Microbiol Biotechnol. 2013 Nov 28;23(11):1569-76.
t10,c12 conjugated linoleic acid upregulates hepatic de novo lipogenesis and triglyceride synthesis via mTOR pathway activation.
Go GW1, Oh S, Park M, Gang G, McLean D, Yang HS, Song MH, Kim Y.
Author information
Abstract
In mice, supplementation of t10,c12 conjugated linoleic acid (CLA) increases liver mass and hepatic steatosis via increasing uptake of fatty acids released from adipose tissues. However, the effects of t10,c12 CLA on hepatic lipid synthesis and the associated mechanisms are largely unknown. Thus, we tested the hypothesis that gut microbiota-producing t10,c12 CLA would induce de novo lipogenesis and triglyceride (TG) synthesis in HepG2 cells, promoting lipid accumulation. It was found that treatment with t10,c12 CLA (100 micrometer) for 72 h increased neutral lipid accumulation via enhanced incorporation of acetate, palmitate, oleate, and 2- deoxyglucose into TG. Furthermore, treatment with t10,c12 CLA led to increased mRNA expression and protein levels of lipogenic genes including SREBP1, ACC1, FASN, ELOVL6, GPAT1, and DGAT1, presenting potential mechanisms by which CLA may increase lipid deposition. Most strikingly, t10,c12 CLA treatment for 3 h increased phosphorylation of mTOR, S6K, and S6. Taken together, gut microbiota-producing t10,c12 CLA activates hepatic de novo lipogenesis and TG synthesis through activation of the mTOR/SREBP1 pathway, with consequent lipid accumulation in HepG2 cells.