Most familiar examples of low-dimensional chaotic flows occur in systems having one or more saddle points. Such saddle points allow homoclinic and heteroclinic orbits and the prospect of rigorously proving the chaos when the Shilnikov condition is satisfied. Furthermore, such saddle points provide a means for locating any strange attractors by choosing an initial condition on the unstable manifold in the vicinity of the saddle point.
Recent researches by Leonov and Kuznetsov have involved categorizing periodic and chaotic attractors as either self-excited or hidden. A self-excited attractor has a basin of attraction that is associated with an unstable equilibrium, whereas a hidden attractor (HA) has a basin of attraction that does not intersect with small neighborhoods of any equilibrium points. The classical attractors of Lorenz, Rössler, Chen, Sprott (cases B to S), and other widely-known attractors are those excited from unstable equilibria. From a computational point of view this allows one to use a numerical method in which a trajectory started from a point on the unstable manifold in the neighborhood of an unstable equilibrium, reaches an attractor and identifies it. Hidden attractors cannot be found by this method and are important in engineering applications because they allow unexpected and potentially disastrous responses to perturbations in a structure like a bridge or an airplane wing.
--------------------------------------
We are invited to write a complete review paper about “dynamical systems hidden attractors”. I am preparing a list of related references. If you are aware of related publications, can you please help me in completing/correcting the following list? I appreciate if you can add some explanations and reasons for your suggestions.
Best Regards,
Sajad
--------------------------------------
Mathematical systems:
In [1-29].
Real systems:
In chaotic circuits [30-54], flexible space launch vehicle [55], drilling system [56-58], radiophysical oscillator [59], fluid convection motion [60], Aircraft Flight Control [61], Rikitake system [62], Van der Pol-Duffing oscillator [63], Rabinovich-Fabrikant system [64, 65], Goodwin oscillator [66], Glukhovsky-Dolzhansky system [67], Tigan and Yang systems [68], relay systems [69]
References
[1] Z. Wei, R. Wang, A. Liu, A new finding of the existence of hidden hyperchaotic attractors with no equilibria, Mathematics and Computers in Simulation, 100 (2014) 13-23.
[2] V.-T. Pham, S. Jafari, C. Volos, X. Wang, S.M.R.H. Golpayegani, Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria, International Journal of Bifurcation and Chaos, 24 (2014) 1450146.
[3] H. Zhao, Y. Lin, Y. Dai, Hidden attractors and dynamics of a general autonomous van der Pol–Duffing oscillator, International Journal of Bifurcation and Chaos, 24 (2014) 1450080.
[4] U. Chaudhuri, A. Prasad, Complicated basins and the phenomenon of amplitude death in coupled hidden attractors, Physics Letters A, 378 (2014) 713-718.
[5] S. Jafari, J. Sprott, Simple chaotic flows with a line equilibrium, Chaos, Solitons & Fractals, 57 (2013) 79-84.
[6] M. Molaie, S. Jafari, J.C. Sprott, S.M.R.H. Golpayegani, Simple chaotic flows with one stable equilibrium, International Journal of Bifurcation and Chaos, 23 (2013) 1350188.
[7] Z. Wei, I. Moroz, A. Liu, Degenerate Hopf bifurcations, hidden attractors and control in the extended Sprott E system with only one stable equilibrium, Turkish Journal of Mathematics, 38 (2014) 672-687.
[8] C. Li, J. Sprott, Chaotic flows with a single nonquadratic term, Physics Letters A, 378 (2014) 178-183.
[9] Y. Feng, Z. Wei, Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors, The European Physical Journal Special Topics, 224 (2015) 1619-1636.
[10] Y. Feng, J. Pu, Z. Wei, Switched generalized function projective synchronization of two hyperchaotic systems with hidden attractors, The European Physical Journal Special Topics, 224 (2015) 1593-1604.
[11] V.-T. Pham, F. Rahma, M. Frasca, L. Fortuna, Dynamics and synchronization of a novel hyperchaotic system without equilibrium, International Journal of Bifurcation and Chaos, 24 (2014) 1450087.
[12] I. Burkin, N.N. Khien, Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems, Differential Equations, 50 (2014) 1695-1717.
[13] Z. Wei, W. Zhang, Hidden Hyperchaotic Attractors in a Modified Lorenz–Stenflo System with Only One Stable Equilibrium, International Journal of Bifurcation and Chaos, 24 (2014) 1450127.
[14] P. Sharma, M. Shrimali, A. Prasad, N. Kuznetsov, G. Leonov, Control of multistability in hidden attractors, The European Physical Journal Special Topics, 224 (2015) 1485-1491.
[15] A. Prasad, Existence of perpetual points in nonlinear dynamical systems and its applications, International Journal of Bifurcation and Chaos, 25 (2015) 1530005.
[16] C. Li, J. Sprott, Finding coexisting attractors using amplitude control, Nonlinear Dynamics, 78 (2014) 2059-2064.
[17] P.R. Sharma, M.D. Shrimali, A. Prasad, N. Kuznetsov, G. Leonov, Controlling Dynamics of Hidden Attractors, International Journal of Bifurcation and Chaos, 25 (2015) 1550061.
[18] S. Jafari, J.C. Sprott, V.-T. Pham, S.M.R.H. Golpayegani, A.H. Jafari, A New Cost Function for Parameter Estimation of Chaotic Systems Using Return Maps as Fingerprints, International Journal of Bifurcation and Chaos, 24 (2014) 1450134.
[19] D. Xiao-Yu, L. Chun-Biao, B. Bo-Cheng, W. Hua-Gan, Complex transient dynamics of hidden attractors in a simple 4D system, Chinese Physics B, 24 (2015) 050503.
[20] S.C. Moreno, K. Casas-García, J. Flores-Godoy, F.V. Valencia, G. Fernández-Anaya, Study of new chaotic flows on a family of 3-dimensional systems with quadratic nonlinearities, Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012016.
[21] T. Kapitaniak, G. Leonov, Multistability: Uncovering hidden attractors, The European Physical Journal Special Topics, 224 (2015) 1405-1408.
[22] S. Jafari, J. Sprott, S.M.R.H. Golpayegani, Elementary quadratic chaotic flows with no equilibria, Physics Letters A, 377 (2013) 699-702.
[23] S. Jafari, J. Sprott, F. Nazarimehr, Recent New Examples of Hidden Attractors, The European Physical Journal Special Topics, 224 (2015) 1469-1476.
[24] T. Gotthans, J. Petržela, New class of chaotic systems with circular equilibrium, Nonlinear Dynamics, DOI (2015) 1-7.
[25] X. Wang, G. Chen, A chaotic system with only one stable equilibrium, Communications in Nonlinear Science and Numerical Simulation, 17 (2012) 1264-1272.
[26] X. Wang, G. Chen, Constructing a chaotic system with any number of equilibria, Nonlinear Dynamics, 71 (2013) 429-436.
[27] Z. Wei, Dynamical behaviors of a chaotic system with no equilibria, Physics Letters A, 376 (2011) 102-108.
[28] J.C. Sprott, S. Jafari, V.-T. Pham, Z.S. Hosseini, A chaotic system with a single unstable node, Physics Letters A, 379 (2015) 2030-2036.
[29] F.R. Tahir, S. Jafari, V.-T. Pham, C. Volos, X. Wang, A Novel No-Equilibrium Chaotic System with Multiwing Butterfly Attractors, International Journal of Bifurcation and Chaos, 25 (2015) 1550056.
[30] G. Leonov, N. Kuznetsov, V. Vagaitsev, Hidden attractor in smooth Chua systems, Physica D: Nonlinear Phenomena, 241 (2012) 1482-1486.
[31] G. Leonov, N. Kuznetsov, V. Vagaitsev, Localization of hidden Chuaʼs attractors, Physics Letters A, 375 (2011) 2230-2233.
[32] N.V. Kuznetsov, O. Kuznetsova, G.A. Leonov, V. Vagaytsev, Hidden Attractor in Chua's Circuits, ICINCO (1), 2011, pp. 279-283.
[33] S.-K. Lao, Y. Shekofteh, S. Jafari, J.C. Sprott, Cost function based on Gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor, International Journal of Bifurcation and Chaos, 24 (2014) 1450010.
[34] N. Kuznetsov, G. Leonov, V. Vagaitsev, Analytical-numerical method for attractor localization of generalized Chua’s system, IFAC Proceedings Volumes (IFAC-PapersOnline), 4 (2010) 29-33.
[35] N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev, Analytical-numerical localization of hidden attractor in electrical Chua’s circuit, Informatics in Control, Automation and Robotics, Springer2013, pp. 149-158.
[36] G.A. Leonov, N.V. Kuznetsov, Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, International Journal of Bifurcation and Chaos, 23 (2013) 1330002.
[37] V.-T. Pham, C. Volos, S. Jafari, Z. Wei, X. Wang, Constructing a novel no-equilibrium chaotic system, International Journal of Bifurcation and Chaos, 24 (2014) 1450073.
[38] Q. Li, H. Zeng, X.-S. Yang, On hidden twin attractors and bifurcation in the Chua’s circuit, Nonlinear Dynamics, 77 (2014) 255-266.
[39] G.A. Leonov, N.V. Kuznetsov, Analytical-numerical methods for hidden attractors’ localization: the 16th Hilbert problem, Aizerman and Kalman conjectures, and Chua circuits, Numerical Methods for Differential Equations, Optimization, and Technological Problems, Springer2013, pp. 41-64.
[40] N. Kuznetsov, V. Vagaytsev, G. Leonov, S. Seledzhi, Localization of hidden attractors in smooth Chua’s systems, International Conference on Applied and Computational Mathematics, 2011, pp. 26-33.
[41] P. Saha, D. Saha, A. Ray, A. Chowdhury, Memristive non-linear system and hidden attractor, The European Physical Journal Special Topics, 224 (2015) 1563-1574.
[42] V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, Hidden attractors in a chaotic system with an exponential nonlinear term, The European Physical Journal Special Topics, 224 (2015) 1507-1517.
[43] V.-T. Pham, C. Volos, S. Jafari, X. Wang, S. Vaidyanathan, Hidden hyperchaotic attractor in a novel simple memristive neural network, Optoelectronics and Advanced Materials-Rapid Communications, 8 (2014) 1157-1163.
[44] Z.T. Zhusubaliyev, E. Mosekilde, Multistability and hidden attractors in a multilevel DC/DC converter, Mathematics and Computers in Simulation, 109 (2015) 32-45.
[45] V.-T. Pham, C. Volos, S. Jafari, X. Wang, Generating a novel hyperchaotic system out of equilibrium, OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 8 (2014) 535-539.
[46] V. Semenov, I. Korneev, P. Arinushkin, G. Strelkova, T. Vadivasova, V. Anishchenko, Numerical and experimental studies of attractors in memristor-based Chua’s oscillator with a line of equilibria. Noise-induced effects, The European Physical Journal Special Topics, 224 (2015) 1553-1561.
[47] S. Vaidyanathan, C.K. Volos, V. Pham, Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium, Journal of Engineering Science and Technology Review, 8 (2015) 232-244.
[48] M. Chen, J. Yu, B.-C. Bao, Finding hidden attractors in improved memristor-based Chua''s circuit, Electronics Letters, 51 (2015) 462-464.
[49] S. Kingni, S. Jafari, H. Simo, P. Woafo, Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, The European Physical Journal Plus, 129 (2014) 1-16.
[50] G. Bianchi, N. Kuznetsov, G. Leonov, M. Yuldashev, R. Yuldashev, Limitations of PLL simulation: hidden oscillations in SPICE analysis, arXiv preprint arXiv:1506.02484, DOI (2015).
[51] M. Chen, M. Li, Q. Yu, B. Bao, Q. Xu, J. Wang, Dynamics of self-excited attractors and hidden attractors in generalized memristor-based Chua’s circuit, Nonlinear Dynamics, DOI (2015) 1-12.
[52] V. Pham, C. Volos, S. Vaidyanathan, T. Le, V. Vu, A Memristor-Based Hyperchaotic System with Hidden Attractors: Dynamics, Synchronization and Circuital Emulating, Journal of Engineering Science and Technology Review, 2 (2015) 205-214.
[53] V.-T. Pham, C. Volos, L.V. Gambuzza, A memristive hyperchaotic system without equilibrium, The Scientific World Journal, 2014 (2014).
[54] B. Bao, F. Hu, M. Chen, Q. Xu, Y. Yu, Self-Excited and Hidden Attractors Found Simultaneously in a Modified Chua's Circuit, International Journal of Bifurcation and Chaos, 25 (2015) 1550075.
[55] B. Andrievsky, N. Kuznetsov, G. Leonov, S. Seledzhi, Hidden oscillations in stabilization system of flexible launcher with saturating actuators, IFAC Proceedings Volumes (IFAC-PapersOnline), 19 (2013) 37-41.
[56] G. Leonov, N. Kuznetsov, M. Kiseleva, E. Solovyeva, A. Zaretskiy, Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dynamics, 77 (2014) 277-288.
[57] M. Kiseleva, N. Kuznetsov, G. Leonov, P. Neittaanmäki, Drilling systems: Stability and hidden oscillations, Discontinuity and Complexity in Nonlinear Physical Systems, Springer2014, pp. 287-304.
[58] N. Kuznetsov, G. Leonov, E. Solovyeva, N. Kondratyeva, M. Kiseleva, Hidden Periodic Oscillations in Drilling System Driven by Induction Motor, World Congress, 2014, pp. 5872-5877.
[59] A. Kuznetsov, S. Kuznetsov, E. Mosekilde, N. Stankevich, Co-existing hidden attractors in a radio-physical oscillator system, Journal of Physics A: Mathematical and Theoretical, 48 (2015) 125101.
[60] G. Leonov, N. Kuznetsov, T. Mokaev, Homoclinic orbit and hidden attractor in the Lorenz-like system describing the fluid convection motion in the rotating cavity, arXiv preprint arXiv:1412.7667, DOI (2014).
[61] B.R. Andrievsky, N.V. Kuznetsov, G.A. Leonov, A.Y. Pogromsky, Hidden Oscillations in Aircraft Flight Control System with Input Saturation, PSYCO, 2013, pp. 75-79.
[62] Z. Wei, W. Zhang, Z. Wang, M. Yao, Hidden attractors and dynamical behaviors in an extended Rikitake system, International Journal of Bifurcation and Chaos, 25 (2015) 1550028.
[63] S. Brezetskyi, D. Dudkowski, T. Kapitaniak, Rare and hidden attractors in Van der Pol-Duffing oscillators, The European Physical Journal Special Topics, 224 (2015) 1459-1467.
[64] N. Kuznetsov, G. Leonov, T. Mokaev, Localization of a hidden attractor in the Rabinovich system, arXiv preprint arXiv:1504.04723, DOI (2015).
[65] M.-F. Danca, M. Feckan, N. Kuznetsov, G. Chen, Looking more closely to the Rabinovich-Fabrikant system, arXiv preprint arXiv:1509.09206, DOI (2015).
[66] Z.T. Zhusubaliyev, E. Mosekilde, A. Churilov, A. Medvedev, Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay, The European Physical Journal Special Topics, 224 (2015) 1519-1539.
[67] G. Leonov, N. Kuznetsov, T. Mokaev, The Lyapunov dimension formula of self-excited and hidden attractors in the Glukhovsky-Dolzhansky system, arXiv preprint arXiv:1509.09161, DOI (2015).
[68] G. Leonov, N. Kuznetsov, N. Korzhemanova, D. Kusakin, Lyapunov dimension formula of attractors in the Tigan and Yang systems, arXiv preprint arXiv:1510.01492, DOI (2015).
[69] Z.T. Zhusubaliyev, E. Mosekilde, V.G. Rubanov, R.A. Nabokov, Multistability and hidden attractors in a relay system with hysteresis, Physica D: Nonlinear Phenomena, DOI (2015).