We define a factoriangular number (Ftn) as the sum of a factorial and its corresponding triangular number, that is, Ftn = n! + n(n+1) / 2. If both n and m are natural numbers greater than or equal to 4, is there an Ftn that is a divisor of Ftm? Please also see the article provided in the link below, specifically Conjecture 2 on pp. 8-9.

Article On the Sum of Corresponding Factorials and Triangular Number...

More Romer Castillo's questions See All
Similar questions and discussions