02 February 2014 30 10K Report

See http://www.nature.com/news/cosmic-mismatch-hints-at-the-existence-of-a-sterile-neutrino-1.14752. It states:

"… The background radiation shows the small density variations in the early universe that would eventually cause matter to clump in some places and form voids in others. We can see the end product of this clumping in the recent universe by observing the spread of galaxy clusters across space.

"The best measurements of the cosmic background radiation came from the European Space Agency’s orbiting Planck telescope in March 2013. Galaxy-cluster measurements, on the other hand, come from various methods that include mapping the spread of mass across the universe by looking for the gravitational lensing, or warping of light, it causes. The two measurements, however, are inconsistent with one another. "We compare the universe at an early time to a later time, and we have a model that extrapolates between the two," says Richard Battye of the University of Manchester, UK, co-author of the new study1 published on 7 February in Physical Review Letters (PRL). "If you stick to the model that fits the CMB data, then number of clusters you find is a factor of two lower than you expect.""

Recent reports of X-ray signals that may signify the decay of sterile neutrinos have raised hopes for a cosmological solution, as some mix of Cold Dark Matter (CDM), Warm Dark Matter (WDM) and/or Hot Dark Matter (HDM) could fit CMB projections of galaxy cluster formations to observations since WDM and HDM would prevent structure formation at increasingly larger scales. See http://arxiv.org/abs/1308.3255 http://arxiv.org/abs/1402.2301 http://arxiv.org/abs/1402.4119 http://dx.doi.org/10.1103/PhysRevLett.112.051303 and http://dx.doi.org/10.1103/PhysRevLett.112.051302.

Also see http://phys.org/news/2014-02-massive-neutrinos-cosmological-conundrum.html https://www.technology.org/2014/02/25/neutrino-replaces-higgs-boson-sought-particle/ http://news.sciencemag.org/physics/2014/02/x-rays-other-galaxies-could-emanate-particles-dark-matter and http://www.nature.com/news/physics-broaden-the-search-for-dark-matter-1.14795.

However, if the composition of universal mass-energy included HDM or WDM and less total CDM than now thought, how would that affect the enormous gravitational effects routinely attributed to CDM in the observed universe?

Adding HDM and/or WDM may help with LCDM problems such as 'the small scale structure problem', 'the missing satellite problem', the 'cuspy halo problem' and others, but it must do so while maintaining alignment with other observations. What other L-CDM results would be affected by the inclusion of HDM and/or WDM?

Similar questions and discussions