I am still unsure about the relationship between BIBO and Lyapunov stability of simple undelayed LTI SISO systems.
Basic facts:
1) The system is STABLE if it has all system poles (eigenvalues) in the open left-half plane (LHP) or even single poles on the imaginary axis.
2) The system is ASYMPTOTICALLY or EXPONENTIALLY STABLE if it has all system poles (eigenvalues) in the open left-half plane (LHP).
3) The system is BIBO STABLE if it has all system poles (eigenvalues) in the open left-half plane. Or, the system is BIBO STABLE if its impulse function is absolutely integrable (i.e., it is L1-stable).
4) Btw., it is a fact that LTI SISO systems with DELAYS can have infinitely many poles in the LHP except for the complex infinity. Such systems are EXPONENTIALLY stable but they can/cannot be ASYMPTOTICALLY, Hinf or BIBO stable. Here, moreover, BIBO implies Hinf stability.
Notes:
- Some authors consider BIBO stability as a feature of the TRANSFER FUNCTION, not the SYSTEM itself. That is, there may exist unstable modes that cannot be seen at the output in the system. Therefore, every asymptotically Lyapunov stable system is BIBO, not vice-versa.
- I found also the idea in the literature that BIBO is stronger than asymptotical Lyapunov stability – however, I mean that this is incorrect.
Could anyone clearly explain me whether it exist any general relationship (inclusion, implication,…) between BIBO and (asymptotic) Lyapunov stability for SISO LTI delay-free systems, please?