What is the role of microorganisms in the soil and role of carbon cycle in soil fertility and role of microbes in soil nutrient cycling and transformation of carbon in soil?
Soil microorganisms, by actively participating in the decomposition and transformation of organic matter through diverse metabolic pathways, play a pivotal role in carbon cycling within soil systems and contribute to the stabilization of organic carbon, thereby influencing soil carbon storage and turnover. Soil microorganisms are responsible for most of the nutrient release from organic matter. When microorganisms decompose organic matter, they use the carbon and nutrients in the organic matter for their own growth. They release excess nutrients into the soil where they can be taken up by plants. Upon the death of plants and animals, microbes assume a dominant role in carbon cycle. The dead tissues are degraded and transformed into microbial cells and humus or soil organic fraction. Further decomposition of these materials leads to the production of CO2 and once again it is recycled.Microbes are critical in the process of breaking down and transforming dead organic material into forms that can be reused by other organisms. This is why the microbial enzyme systems involved are viewed as key 'engines' that drive the Earth's biogeochemical cycles. Microorganisms are responsible for making up numerous transformations, which changes plant nutrients to readily available forms and make and stabilize desirable soil structure for luxuriant plant growth Phosphorus Solubilizing bacteria and fungi play an important role in converting insoluble phosphatic compound. Microorganisms play a crucial role in nutrient cycling in soil. The composition and activity of microbiota impact the soil quality status, health, and nutrient enrichment. Microbes are essential for nutrient mobility and absorption. The microbe plays an essential role of organic matter degradation in nutrient cycling; microorganism present in soil digests the organic matter including dead organisms. The nutrients get released by the breakdown of the organic molecule to make it available for plants to uptake nutrients in the soil through roots.