Drug-dealers receipts (CH3NO2) from www.erowid.org
The lower nitroalkanes (sometimes refered to as nitroparaffins) are easily reduced by a multitude of systems, but by far the easiest, and also the highest yielding, is the Iron/Hydrochloric acid system. The reaction is:
4 RNO2 + 9 Fe + 4 H2O (HCl)=> 4 RNH2 + 3 Fe3O4
First, your Nitromethane *may* require purification, especially if it was for "fuel" use. In this case, it needs to be vacuum distilled at a vacuum of better than 100mm Hg. At that pressure, it will come off at ~47°C. Distillation at atmospheric pressure is possible, but I do not recommend it due to the highly flammable nature of the compound and because it's flash point is 42°C. It's your choice.
*CAUTION*
The lower nitroalkanes form shock and/or temperature sensitive EXPLOSIVE compounds with amines and hydroxides. BE CAREFUL, DAMNIT! You have been warned.
Assemble a 500mL RB flask with claisen adapter, thermometer down the center to read the liquid temperature, and reflux condenser with a cork and tube leading to a beaker of 1M Hydrochloric acid. Drop a stirrer magnet in, then add 105g of 40 Mesh Iron filings, 225mL of water and 1g of Ferric Chloride. Next, add 35mL of concentrated Hydrochloric Acid ("muriatic acid" is ok). When the bubbling ceases, add 31g of Nitromethane.
Heat the reaction mixture to 100°C and hold for 14 hours. A temperature regulator is necessary if using a heating mantle, else use a large boiling water bath (if you will be doing it overnight, so it doesn't run out).
At the end of this time, allow to cool then add enough 25% Sodium Hydroxide solution to to get the pH above 11. Heat on a water bath or with gentle electric heat to drive the Methylamine off as a gas into the same beaker of Hydrochloric acid used as a trap during the reaction.
Evaporate the beaker contents to dryness on a glass plate in the oven to collect the crystals of Methylamine HCl (hygroscopic!). The yield should be approximately 15g (95%).
*NOTE*
Alternately, you may want to try using a Tin/HCl system which will give an equivalent yield in a much shorter time with the disadvantage that Tin is a much more expensive metal. The balanced equation for the reduction follows:
Cognate procedure: Setup a flask with reflux condenser in which .25 mol of nitromethane, .38 mol of granulated tin metal and a stirrer magnet have been added. Carefully pour 115mL of 31.45% hydrochloric acid (muriatic acid) down the reflux condenser in 10-15mL increments, waiting for the reaction to settle down before pouring the next aliquot. If the reaction seems to get out of hand (excessive frothing, vapor escaping the reflux condenser, etc...) then quickly slide an ice bath in place until it slackens back down. Once all the HCl has been added, heat the mixture to reflux with an electric mantle for 1hr. At the end of this time, allow to cool, preferably in an ice bath, then add, carefully, a chilled solution of 75g sodium hydroxide in 125mL of water. If the flask contents start to bubble violently you will watch your yield go out the window, so add slowly! Since methylamine readily dissolves in water, you will need to distill the reaction contents carefully to first liberate the 40% constant boiling solution (bp: 53°C) and then the gas itself. The product is best captured by bubbling the distillation vapor into a beaker of hydrochloric acid (use a slight molar excess of HCl to insure no loss). Proceed as above by evaporating the bubbler solution to yield the crystals (take care when evaporating HCl solutions, as the excess acid will vaporize into the air, corroding ovens, lungs, etc...). [