Quantum vacuum
Quantum mechanics can be used to describe spacetime as being non-empty at extremely small scales, fluctuating and generating particle pairs that appear and disappear incredibly quickly. It has been suggested by some such as Paul Dirac that this quantum vacuum may be the equivalent in modern physics of a particulate aether. However, Dirac's aether hypothesis was motivated by his dissatisfaction with quantum electrodynamics, and it never gained support by the mainstream scientific community.
Robert B. Laughlin, Nobel Laureate in Physics, endowed chair in physics, Stanford University, had this to say about ether in contemporary theoretical physics:
It is ironic that Einstein's most creative work, the general theory of relativity, should boil down to conceptualizing space as a medium when his original premise [in special relativity] was that no such medium existed [..] The word 'ether' has extremely negative connotations in theoretical physics because of its past association with opposition to relativity. This is unfortunate because, stripped of these connotations, it rather nicely captures the way most physicists actually think about the vacuum. . . . Relativity actually says nothing about the existence or nonexistence of matter pervading the universe, only that any such matter must have relativistic symmetry. [..] It turns out that such matter exists. About the time relativity was becoming accepted, studies of radioactivity began showing that the empty vacuum of space had spectroscopic structure similar to that of ordinary quantum solids and fluids. Subsequent studies with large particle accelerators have now led us to understand that space is more like a piece of window glass than ideal Newtonian emptiness. It is filled with 'stuff' that is normally transparent but can be made visible by hitting it sufficiently hard to knock out a part. The modern concept of the vacuum of space, confirmed every day by experiment, is a relativistic ether. But we do not call it this because it is taboo.