Your knowledge is beneficial in the following areas:
RA5: Detecting anomalies in the IoT – Self Adaptive IDS (Intrusion Detection System)
RA6: Machine learning for IoT Security & Privaty support
RA7: Adaptive Trust Systems in the IoT; Adaptive trust estimation
Here are some sources of literature on these RAs.
Best regards
Anatol Badach
RA 5: Detecting anomalies in the IoT
V. A. Desnitsky, I. V. Kotenko and S. B. Nogin:Detection of Anomalies in Data for Monitoring of Security Components in the Internet of Things https://ieeexplore.ieee.org/document/7190452/
R. Ferrando and P. Stacey: Classification of Device Behaviour in Internet of Things Infrastructures: Towards Distinguishing the Abnormal From Security Threats https://arrow.dit.ie/cgi/viewcontent.cgi?article=1156&context=engscheleart2
S. Ahmad, A. Lavin, S. Purdy and Z. Agha: Unsupervised real-time anomaly detection for streaming data https://www.sciencedirect.com/science/article/pii/S0925231217309864
S. Ahmad, S. Purdy: Real-Time Anomaly Detection for Streaming Analytics https://arxiv.org/pdf/1607.02480.pdf
H. HWJ Bosman, G. Iacca, A. Tejada, H. J. Wörtche, A. Liotta: Spatial anomaly detection in sensor networks using neighborhood information https://www.sciencedirect.com/science/article/pii/S1566253516300252
H. HWJ Bosman: Anomaly detection in networked embedded sensor systems https://pure.tue.nl/ws/files/31668745/20160912_Bosman.pdfAnomaly
JP Vasseur and M.G. Seewald: Threat Detection and Mitigation for IoT Systems using Self Learning Networks (SLN) https://docbox.etsi.org/Workshop/2016/201606_SECURITYWS/S05_MITIGATINGMECHANISMS/CISCO_SEEWALD.pdf
RA6: Machine learning for IoT Security & Privaty support
F. Restuccia, Member, S. D’Oro and T. Melodia: "Securing the Internet of Things: New Perspectives and Research Challenges" https://arxiv.org/pdf/1803.05022.pdf
S. Kaplantzis, A. Shilton, N. Mani and Y. Sekercioglu: Detecting Selective Forwarding Attacks in Wireless Sensor Networks using Support Vector Machines https://pdfs.semanticscholar.org/1364/90cbfdec54735532a977a6d36d488eb14dca.pdf
J. Ca˜nedo and A. Skjellum: Using Machine Learning to Secure IoT Systems https://ieeexplore.ieee.org/document/7906930/
A. Balaji Buduru: An Adaptive Approach to Securing Ubiquitous Smart Devices in IoT Environment with Probabilistic User Behavior Prediction https://repository.asu.edu/attachments/176569/content/Buduru_asu_0010E_16584.pdf
RA7: Adaptive Trust Systems in the IoT; Adaptive trust estimation
H. Son, N. Kang, B. Gwak and D. Lee: An Adaptive IoT Trust Estimation Scheme Combining Interaction History and Stereotypical Reputation https://ieeexplore.ieee.org/document/7983132/
Your knowledge is beneficial in the following areas:
RA5: Detecting anomalies in the IoT – Self Adaptive IDS (Intrusion Detection System)
RA6: Machine learning for IoT Security & Privaty support
RA7: Adaptive Trust Systems in the IoT; Adaptive trust estimation
Here are some sources of literature on these RAs.
Best regards
Anatol Badach
RA 5: Detecting anomalies in the IoT
V. A. Desnitsky, I. V. Kotenko and S. B. Nogin:Detection of Anomalies in Data for Monitoring of Security Components in the Internet of Things https://ieeexplore.ieee.org/document/7190452/
R. Ferrando and P. Stacey: Classification of Device Behaviour in Internet of Things Infrastructures: Towards Distinguishing the Abnormal From Security Threats https://arrow.dit.ie/cgi/viewcontent.cgi?article=1156&context=engscheleart2
S. Ahmad, A. Lavin, S. Purdy and Z. Agha: Unsupervised real-time anomaly detection for streaming data https://www.sciencedirect.com/science/article/pii/S0925231217309864
S. Ahmad, S. Purdy: Real-Time Anomaly Detection for Streaming Analytics https://arxiv.org/pdf/1607.02480.pdf
H. HWJ Bosman, G. Iacca, A. Tejada, H. J. Wörtche, A. Liotta: Spatial anomaly detection in sensor networks using neighborhood information https://www.sciencedirect.com/science/article/pii/S1566253516300252
H. HWJ Bosman: Anomaly detection in networked embedded sensor systems https://pure.tue.nl/ws/files/31668745/20160912_Bosman.pdfAnomaly
JP Vasseur and M.G. Seewald: Threat Detection and Mitigation for IoT Systems using Self Learning Networks (SLN) https://docbox.etsi.org/Workshop/2016/201606_SECURITYWS/S05_MITIGATINGMECHANISMS/CISCO_SEEWALD.pdf
RA6: Machine learning for IoT Security & Privaty support
F. Restuccia, Member, S. D’Oro and T. Melodia: "Securing the Internet of Things: New Perspectives and Research Challenges" https://arxiv.org/pdf/1803.05022.pdf
S. Kaplantzis, A. Shilton, N. Mani and Y. Sekercioglu: Detecting Selective Forwarding Attacks in Wireless Sensor Networks using Support Vector Machines https://pdfs.semanticscholar.org/1364/90cbfdec54735532a977a6d36d488eb14dca.pdf
J. Ca˜nedo and A. Skjellum: Using Machine Learning to Secure IoT Systems https://ieeexplore.ieee.org/document/7906930/
A. Balaji Buduru: An Adaptive Approach to Securing Ubiquitous Smart Devices in IoT Environment with Probabilistic User Behavior Prediction https://repository.asu.edu/attachments/176569/content/Buduru_asu_0010E_16584.pdf
RA7: Adaptive Trust Systems in the IoT; Adaptive trust estimation
H. Son, N. Kang, B. Gwak and D. Lee: An Adaptive IoT Trust Estimation Scheme Combining Interaction History and Stereotypical Reputation https://ieeexplore.ieee.org/document/7983132/