I have a doubt regarding String-Net theory. Prof. Xiao-Gang Wen stresses upon the point that all fermions must carry gauge charges. The Standard Model contain composite fermions that are neutral for U(1) × SU(2) × SU(3) gauge theory. So, according to string-net theory the Standard Model of particle physics is incomplete, and the correct/complete model should contain extra gauge theory, such as a Z_2 gauge theory. But, Coleman-Mandula theorem states, more or less, that space time symmetries (which determine spin) cannot mix with gauge symmetries in anyway. The Haag-Lopuszanski-Sohnius (HLS) extension of this theorem states that the only possible loophole to the Coleman-Mandula theorem is SUSY, as far as I understood. So, is the Standard Model incomplete from the point of view of string-net theory or is string-net theory radically inconsistent with what we see in nature, and must therefore be wrong in its present form? Also, is it meaningful to call something a Z_2 gauge theory (because, as far as I understand, discrete symmetries can at best act as "large" gauge transformations)? PS: To get an understanding/gist of what Prof. Wen is saying (as I mentioned in the first half of my question) please refer to this paper: http://arxiv.org/abs/cond-mat/0302460