In Stern-Gerlach system cascade we get electrons of two states (spin up and spin down) even after filtering out any of the one set. We know an intrinsic property is a property that an object or a thing has of itself, independently of other things, including its context. Then how it is legitimate to say that the spin is an intrinsic property of the electron?
I'd like to propose a different kind of answer. I think what you're referring to, Mohammad Sayem Mahmood, is an experiment in which Stern-Gerlach apparatuses are arranged in sequence. In this case the following is observed (see also the attached figure taken from wikipedia):
1.If we orient an SG device in the z direction we observe electrons as being deflected up or down.
2. Following that, we can filter out the electrons that have been deflected down. We can then pass the remaining electrons through a second SG device. With this second device also oriented in the z direction we only observe deflections up and never down, as expected. However, If the second SG device is oriented in the x direction then we observe that half of electrons are deflected left and half deflected right.
3. Now we can consider an arrangement with three SG devices. As before the first device is oriented in the z direction and we filter out those electrons that are deflected down. The second device is oriented in the x direction, and we can choose to filter out those that are deflected right, say. Then the third device is oriented in the z direction again.
What might be considered surprising here is that even though we have filtered out electrons that have z spin down, the act of using the second SG device to measure x spin means that when we check z spin once more using the third device half of those electrons passing through are deflected down!
As for an explanation of what is happening here, quantum mechanically the second device acts as a measurement which acts on the state of the system by collapsing it into a state oriented right or a state oriented left. So even though we had filtered to leave only z spin up electrons after the first device, we have now reset these electrons into a state that is unbiased relative to the third SG device; so accordingly we see half of the electrons being deflected up and half down. By invoking measurement invasiveness, via collapse of the wavefunction, we avoid difficulties with interpreting spin as an intrinsic property in this instance.
From a foundational perspective, we might be suspicious of this measurement invasiveness via wavefunction collapse, however. For instance we could take something akin to the perspective of EPR (which in their case was in response to a different kind of experiment) and say that, we might be able to find a more complete theory than Quantum Mechanics, which would nevertheless agree with QMs empirical predictions, but which would describe the electrons passing through the SG devices in a non-invasive way.
A no-go theorem due to Leggett and Garg essentially says that there can be no deeper theory with this property. Another way to interpret the Leggett-Garg result would be that if we insist on describing SG devices as non-invasive then we have a problem with considering spin as an intrinsic non-contextual property of electrons.
(Incidentally, on the Leggett–Garg theorem, I personally found an article by Maroney and Timpson to give a clearer discussion of how to interpret it than the original.)
I find it interesting, too, that you make the link in your question with context. There is also a related feature that can be picked out in the empirical predictions of quantum mechanics, in other kinds of experiments, known as contextuality, which indeed poses problems for our understanding of observable properties being intrinsic to the system of study independent of context of which observables are being observed in conjunction. In fact, in some of my own research I have been looking particularly at the link between contextuality and Leggett–Garg-type results.
If the magnetic field is inhomogeneous then the force on one end of the dipole will be slightly greater than the opposing force on the other end, so that there is a net force which deflects the particle's trajectory. If the particles were classical spinning objects, one would expect the distribution of their spin angular momentum vectors to be random and continuous. Each particle would be deflected by an amount proportional to its magnetic moment, producing some density distribution on the detector screen. Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount. This was a measurement of the quantum observable now known as spin angular momentum, which demonstrated possible outcomes of a measurement where the observable has a discrete set of values or point spectrum.
"Instead, the particles passing through the Stern–Gerlach apparatus are deflected either up or down by a specific amount."
Seems to me that the result would be the same if the atoms used acted as if they were magnetic monopoles of fixed maximum intensity displaying cyclic polarity reversal.
This would establish spin as a relative property, which would mechanically explain covalent magnetic bounding by pairs of electrically mutually repelling electrons.
The neutral silver atoms used in the typical experiments have an odd number of electrons, which means that 1 electron is unpaired on the atoms outermost orbital, which might play a role.
Dear Mikhail,
You might be interested in this paper on the electric and magnetic relativistic fields equations of the electron in motion, making use of the fine structure constant:
https://www.researchgate.net/publication/282646291_Field_Equations_for_Localized_Photons_and_Relativistic_Field_Equations_for_Localized_Moving_Massive_Particles
I'd like to propose a different kind of answer. I think what you're referring to, Mohammad Sayem Mahmood, is an experiment in which Stern-Gerlach apparatuses are arranged in sequence. In this case the following is observed (see also the attached figure taken from wikipedia):
1.If we orient an SG device in the z direction we observe electrons as being deflected up or down.
2. Following that, we can filter out the electrons that have been deflected down. We can then pass the remaining electrons through a second SG device. With this second device also oriented in the z direction we only observe deflections up and never down, as expected. However, If the second SG device is oriented in the x direction then we observe that half of electrons are deflected left and half deflected right.
3. Now we can consider an arrangement with three SG devices. As before the first device is oriented in the z direction and we filter out those electrons that are deflected down. The second device is oriented in the x direction, and we can choose to filter out those that are deflected right, say. Then the third device is oriented in the z direction again.
What might be considered surprising here is that even though we have filtered out electrons that have z spin down, the act of using the second SG device to measure x spin means that when we check z spin once more using the third device half of those electrons passing through are deflected down!
As for an explanation of what is happening here, quantum mechanically the second device acts as a measurement which acts on the state of the system by collapsing it into a state oriented right or a state oriented left. So even though we had filtered to leave only z spin up electrons after the first device, we have now reset these electrons into a state that is unbiased relative to the third SG device; so accordingly we see half of the electrons being deflected up and half down. By invoking measurement invasiveness, via collapse of the wavefunction, we avoid difficulties with interpreting spin as an intrinsic property in this instance.
From a foundational perspective, we might be suspicious of this measurement invasiveness via wavefunction collapse, however. For instance we could take something akin to the perspective of EPR (which in their case was in response to a different kind of experiment) and say that, we might be able to find a more complete theory than Quantum Mechanics, which would nevertheless agree with QMs empirical predictions, but which would describe the electrons passing through the SG devices in a non-invasive way.
A no-go theorem due to Leggett and Garg essentially says that there can be no deeper theory with this property. Another way to interpret the Leggett-Garg result would be that if we insist on describing SG devices as non-invasive then we have a problem with considering spin as an intrinsic non-contextual property of electrons.
(Incidentally, on the Leggett–Garg theorem, I personally found an article by Maroney and Timpson to give a clearer discussion of how to interpret it than the original.)
I find it interesting, too, that you make the link in your question with context. There is also a related feature that can be picked out in the empirical predictions of quantum mechanics, in other kinds of experiments, known as contextuality, which indeed poses problems for our understanding of observable properties being intrinsic to the system of study independent of context of which observables are being observed in conjunction. In fact, in some of my own research I have been looking particularly at the link between contextuality and Leggett–Garg-type results.
Dear Shane,
Quite interesting discussion of aligned SG devices, and quite perceptive remark on the possibility to find a more complete theory than Quantum Mechanics, which would agree with all QM's empirical predictions, but which would allow explaining the electrons behavior passing through the SG devices in a non-invasive way.
The basis of such a possible harmonization of QM with electromagnetism, still lacking in the current QM from Feynman's own observation, is analyzed in this recently published paper, that allows directly relating spin with the magnetic field as a relative property of elementary electromagnetic particles, titled "The Fundamental Resonance States of the Hydrogen Atom":
http://file.scirp.org/pdf/JMP_2018042716061246.pdf
All references to the confirming experiments are provided.
The two main experiments tending to confirm that spin is actually a relative property related to mutual parallel and antiparallel magnetic orientation are provided in the two following papers. The first one is titled "On the Magnetostatic Inverse Cube Law and Magnetic Monopoles" relates to an experiment carried out in 1998:
http://www.ijerd.com/paper/vol7-issue5/H0705050066.pdf
This inverse cube interaction was physically confirmed between actual electrons in 2014 during the Kotler et al. experiment, involving two electrons interacting in parallel magnetic spin alignment, titled: "Measurement of the magnetic interaction between two bound electrons of two separate ions":
https://www.nature.com/articles/nature13403.epdf?referrer_access_token=yoC6RXrPyxwvQviChYrG0tRgN0jAjWel9jnR3ZoTv0PdPJ4geER1fKVR1YXH8GThqECstdb6e48mZm0qQo2OMX_XYURkzBSUZCrxM8VipvnG8FofxB39P4lc-1UIKEO1
Best Regards
André
UP or DOWN is just a poetic language used in physics, just like quark and strangeness. They point to what they mean, not to what they say. Should be avoided. There are two states of electron spin detected, and that is intrinsic (does not depend on external references) for the electron. It's easier, in this case, to say it right.
I agree with André and Shane about the inherent contextuality of the spin state.
When a measurement is made, the spin state collapses in relation to the field of the measuring equipment. If the field is oriented in the z dimension, then the spin state will be either up or down relative to the z dimension.
There is no reason to suggest that when an electron's spin state is "up" in the z direction after it is measured that it possesses any inherent spin orientation in the x or y dimensions. After all, there is no way to know what that orientation might be in those other dimensions except to measure it, and when that is done the results are always 50/50, no matter how they were filtered out in the previous test.
However, after it is measured as being "up" in the z dimension, if it is measured again in the z dimension it will register as "up" again, if the electron was not interfered with between the two measurements. This shows that it retains its quantum state until altered by a measurement in another field orientation.
This suggests to me that the spin state is a relational state between the electron and the EM field. This means it is not intrinsic to the electron by itself alone.
Doug,
I would even add further that the spin state may be a relational state between the "electron-magnetic-field" and the ambient magnetic field.
André,
That's an interesting question: Is spin only about the EM field of the electron and the ambient EM field?
If that were true, then it seems to me that the idea of the electron spin would be seen as irrelevant. Of course, the idea of "spin" was only proposed because it resembles the behavior of a spinning object, even though quantum theory suggests that the electron is a dimensionless point. So, how can an electron spin when it's dimensionless?
However, the idea of spin ties to two different traits of the electron: both the nature of its EM field and its angular momentum. Both make sense as the results of an electrically charged body that spins.
The whole idea of quantum spin is clearly not the same as spinning objects. However, the similarities are striking enough that it implies the electron itself is involved in this quantum spin state somehow.
This is why I proposed that the spin state relationship was between the electron and the ambient EM field. In other words, it seems to me that the electron is still involved in the spin state relationship, not just its field.
Do you see anything that suggests the electron is not involved in this relational state?
If spin does not involve the electron, then why do we also see angular momentum?
Dear Doug,
You write "That's an interesting question: Is spin only about the EM field of the electron and the ambient EM field?"
Quite possibly, but this wouldn't render all notions of "spin" irrelevant, because irrespective of the traditional concept of spin as involving a "transverse rotation" either in one direction or the other (the only two possible cases), we know experimentally that two electrons can associate magnetically only in two possible magnetic orientations, either in parallel magnetic orientation, a configuration that causes them to magnetically repel each other as a function of the "inverse-cube" of the distance separating them, as shown in the Kotler et al experiment that I referred Shane to earlier; or in antiparallel magnetic orientation, which causes them to magnetically attract each other, also as a function of the ''inverse-cube" rule, which is known to be the reason why covalent "magnetic" bounding between a pair of electrons, one from the outermost orbital of 2 different atoms, succeeds in connecting atoms to form molecules, and also to fill orbitals by pair association, despite their electric repulsion as a function of the "inverse-square" of the distance.
In historical reality, the concept of spin was introduced to explain logically why electromagnetic photons of 1.022 MeV could be destabilized into becoming a pair of electron and positrons.
Assigning a spin of 1 to the electromagnetic photon (a boson - involving 2 subcomponents, to explain polarisation) justified then being amenable to converting into two fermions (elementary particles with no subcomponents) having spin 1/2.
Regarding your mention that quantum theory suggests that the electron would be a dimensionless point, note that this refers to the experimentally confirmed fact that electrons "behave" as if they were point-like in all scattering experiments on record.
"Point-like behavior" in this case means that in all scattering experiments involving two electrons colliding with each other, however close they came to their mutual "centers", no unbreachable limit was ever met at any distance from their centers, contrary to what happens when an electron is made to collide with a proton (below a rather high energy leve), for example, which is what revealed the fact that protons occupy a physically measurable volume in space of the order of about 1.2E-15 m, which in turn revealed that the proton is not an elementary particle, but a system of particles, just like the Solar system is not a single body, but a system of separated bodies.
Note also that for calculation purposes, even in classical mechanics, the Earth and the Sun masses are mathematically treated as if they were concentrated in their point centers when calculating trajectories in the solar system, even if we are well aware that they have a measurable volume.
For the electron however, for which no such volume can be experimentally established this raises the question of whether it can effectively "rotate", since rotation implies that a "volume" exists to be amenable to rotating.
To come back to the traditional concept of spin conceptually involving a transverse rotation, it is to be noted that a rotating motion is a cyclic process and that it involves a "frequency".
But the term “frequency” can be applied to any sort of cyclic motion, be it rotational, translational on a closed orbit or any other type of oscillatory motion, from simple sinusoidal harmonic motion to a cyclic translational reciprocating "swing" between two states.
So, from the EM perspective, given the electron has an electric charge, by definition it also has a corresponding magnetic aspects. This means that all aspects of angular momentum that we naturally associate with rotating motion, could also be applied to a possible magnetic reciprocating motion, which in turn allows the "spin" of elementary particles to be hypothesized as possibly corresponding to such a reciprocating motion of the magnetic aspect of the energy making up the electron rest mass.
The first easily reproducible experiment I referred Shane to earlier seems to validate this possibility, because the data collected seems to confirm that with magnetic fields for which both poles geometrically coincide, which is the case by structure for the electron, given its confirmed point-like behavior in all physically observed circumstances, only one pole at a time seems to be present in each magnet, as confirmed by the fact that the force measured in this experiment is exactly half the force that can be measured between two bar magnets similarly made to interact, that we know involve 2 pairs of poles physically separated from each at some distance within each bar.
If interested further in this issue, it is analyzed in more details in Section "17. Parallel and Anti-Parallel Relative Magnetic Spin Orientation" of this recently published paper, titled "The Fundamental Resonance States of the Hydrogen Atom" that I also referred Shane to earlier:
http://file.scirp.org/pdf/JMP_2018042716061246.pdf
You also wrote " This is why I proposed that the spin state relationship was between the electron and the ambient EM field. In other words, it seems to me that the electron is still involved in the spin state relationship, not just its field."
Of course, they both are, for the simple reason that the "electron-inner-magnetic-field" that can interact with any other "ambient-magnetic-fields" is part of the electron energy quantum. It was demonstrated by Paul Marmet in 2003 that it constitutes exactly half of its invariant rest mass. This is also analyzed with references to supporting formal references in this last paper mentioned.
The relation between the electron inner magnetic field and its mass was first analyzed in the paper I referred Mikhail to previously:
https://www.researchgate.net/publication/282646291_Field_Equations_for_Localized_Photons_and_Relativistic_Field_Equations_for_Localized_Moving_Massive_Particles
You wrote: " If spin does not involve the electron, then why do we also see angular momentum? "
We traditionally "interpret" spin as if we saw an angular momentum, but we may also "interpret" it as being any other two-valued alternate possibility. We know that spin is related to the magnetic aspect of elementary particles electromagnetic nature. The reciprocating magnetic option also seems to match the observed behavior.
Best Regards
André
André,
Thank you for your detailed response. Some of the history was new to me.
However, after reading everything you wrote, I am left wondering what your main point was.
Here is what I wrote in my previous post: "That's an interesting question: Is spin only about the EM field of the electron and the ambient EM field?" I was only asking that question because I thought that is what you were saying in your previous post.
However, from what you just wrote above, it sounds like you and I both agree that the electron's spin state includes the electron's state.
Here is your comment from your previous post, in response to my post: "I would even add further that the spin state may be a relational state between the "electron-magnetic-field" and the ambient magnetic field."
Can you explain what you were trying to say here? Apparently I missed the point you were trying to make.
Here is the comment I made that you were responding to. I said that: "the spin state is a relational state between the electron and the EM field. This means it is not intrinsic to the electron by itself alone."
What were you trying to "add further" in saying that the spin state may be a relational state between the EM field of the electron and the ambient field?
Thanks.
Doug.
Thank you Dr. Shane for your careful notification of the word ‘cascade’ in my question…
Dear Doug,
You ask: "Here is the comment I made that you were responding to. I said that: "the spin state is a relational state between the electron and the EM field. This means it is not intrinsic to the electron by itself alone."
What were you trying to "add further" in saying that the spin state may be a relational state between the EM field of the electron and the ambient field?"
I meant that it is the magnetic field of the electron which is intrinsic, not its spin.
What I specifically meant was that it is the "intrinsic magnetic field" of the electron, that interacts with any ambient magnetic field. From a discovery made by Paul Marmet, published in 2003, it is clear now that the magnetic field of the electron is made of half the oscillating electromagnetic energy that constitutes its invariant rest mass.
This means that the electron spin can only be a relative property depending on whether the magnetic orientation of a given electron at any given instant is in parallel or anti-parallel magnetic orientation with respect to the intrinsic magnetic field of any other elementary particle, or with respect to an ambient larger magnetic field.
My view is that quantum entanglement is a fascinating mathematical concept, but that it is possible in physical reality only at close magnetic interaction contact due to short range of the inverse cube law that prevails between magnetically interacting elementary particles, be they electromagnetic photons or electrons, despite hopeful expectations that it could work at large distances.
Best Regards
André
André,
Okay, I understand what you are saying now: It is only the orientation of the electron's magnetic field that is relational, depending on the ambient EM field. The electron's magnetic field is a fixed quantity, along with its rest mass.
Another way you could say this is that the amount of spin is intrinsic to the electron, however the direction or orientation of its spin depends on the ambient EM field.
I see what you mean, however, I see another aspect to this that makes it a little more complex.
The question is why is the rest mass and magnetic field of the electron a fixed quantity? According to quantum field theory, this is due to the electron particle field. This means, if I understand it correctly, that the properties of the amount of spin and rest mass of all electrons are the same because they have a relationship with the electron particle field.
Normally, this is such a stable relationship that we can consider these properties of the amount of spin and rest mass as belonging to the electron itself. However, the weak force shows us that electrons can sometimes switch allegiance from the electron particle field to the neutrino particle field.
This suggests that even the properties of the amount of spin and rest mass are relationship properties, in some sense. We can generally ignore this, but it does indicate that none of the properties of particles are fully intrinsic. They only seem intrinsic most of the time.
I have a question about your comment on entanglement only being short-range: In cases of photons becoming entangled through sharing a common spin state, do you see these as only short range phenomena as well?
Thanks for your response and clearing up my confusion.
Doug.
Dear Doug,
"Another way you could say this is that the amount of spin is intrinsic to the electron, however the direction or orientation of its spin depends on the ambient EM field."
Not exactly. This would be right if the magnetic field of the electron was stable at an invariant value and invariant polarity orientation.
Not easy to clearly explain in such an ad hoc conversation, but I will try to explain since you seem genuinely interested.
All scattering experiments ever carried out involving electrons revealed that they behave point-like in all such scattering encounters. "Point-like behavior" meaning that no unbreachable limit was ever encountered at any distance from the center of electrons, however close to their mutual centers they came during even the most energetic scattering experiments involving 2 electrons.
With regard to their magnetic field, this means that both their "north" and "south" poles have to geometrically coincide by structure with this point-like location.
It so happens that an easy to carry out experiment at our macroscopic level can be made with magnets having by structure the same geometric coincidence of both of their macroscopic north and south poles at their geometric centers.
When two such magnets are made to interact, the first equation in the attached picture can be derived from the data, which was confirmed as recently as 2014 by Kotler et al. with real electrons made to interact in parallel magnetic spin alignment, that is, in the exact same repulsive magnetic configuration as in the experiment with the magnets mentioned:
https://www.nature.com/articles/nature13403.epdf?referrer_access_token=yoC6RXrPyxwvQviChYrG0tRgN0jAjWel9jnR3ZoTv0PdPJ4geER1fKVR1YXH8GThqECstdb6e48mZm0qQo2OMX_XYURkzBSUZCrxM8VipvnG8FofxB39P4lc-1UIKEO1
The detail of the easily repeatable experiment carried out in 1998 and the data collected were published in 2013:
http://www.gsjournal.net/Science-Journals/Research%20Papers-Mechanics%20/%20Electrodynamics/Download/2264
What is interesting about this experiment, is that it reveals that two such magnets interact with half the force that can be measured when causing 2 bar magnets to interact width-wise, which historically led to the development of the second equation.
This can only mean that in the case of the electrons and of the circular magnets, in both of whose cases their poles coincide with their point-like geometric centers, only one pole at a time can be present within each magnet or each electron, because if both poles of their magnetic fields were present at the same time in each electron or circular magnet, as in the case of the bar magnets, the second standard equation would have been obtained from the circular magnet data, and from the data collected by Kotler et al.
This can only mean that in the case of electrons, the two magnetic poles are present only one at a time, meaning that their magnetic fields cyclically oscillate from increasing to a maximum intensity (which represents one magnetic polarity orientation) to decreasing to zero intensity (which represents the opposite magnetic polarity orientation).
Given that the magnetic field of the electron is not static in a given polarity orientation, the magnetic polarity orientation (the so-called spin) of an electron at any given instant with respect to the magnetic polarity orientation of any other EM particle or ambient magnetic field, does not depend only on the ambient EM field, but also on which polarity orientation the electron is in, during its polarity reversal cycle , at the moment of interaction with the ambient EM field.
So even if the magnetic field of the electron is intrinsic, due to its built-in cyclic polarity reversal, the actual "spin-relation" it may have with other EM particles or ambient magnetic field can only be entirely relative.
I hope this wasn't too heavy. Might well be without proper set up and study.
Best Regards
André
Dear Doug,
In your last message you also asked: "I have a question about your comment on entanglement only being short-range: In cases of photons becoming entangled through sharing a common spin state, do you see these as only short range phenomena as well?"
My other answer being already long, I thought more appropriate to answer this issue separately.
My answer is yes, because like electrons, electromagnetic photons also have been confirmed as behaving point-like during glancing scattering encounters with electrons, such as during Compton scattering.
Behaving point-like, their intrinsic magnetic field can only cyclically vary in intensity as a function of their frequency just like the magnetic field of electrons, which means that any spin-entanglement can also only be very short range, despite hopeful expectations, because, not even considering the fact that all photons move at c, and are only fleetingly present anywhere, the instant that they graze some other EM particle (photon or electron, for example) their spin polarity will have no option but to tend to instantly adapt by switching to least action antiparallel orientation with this newly encountered particle or magnetic field, which may remain in this orientation until the next encounter.
This seems to be related to Faraday's experiments on light polarization with light beams being polarized by ambient magnetic fields.
Best Regards
André
Dear Doug,
You also commented: "his suggests that even the properties of the amount of spin and rest mass are relationship properties, in some sense. We can generally ignore this, but it does indicate that none of the properties of particles are fully intrinsic. They only seem intrinsic most of the time."
From the electromagnetism perspective, the invariance of the electron rest mass is related to the invariance of its electric charge. No experiment ever showed that this charge can vary, whatever velocity the electron can be accelerated to. So its "charge" and its "rest mass" can be considered intrinsic properties of the electron.
Paul Marmet showed that the "intrinsic-magnetic-field" of the electron accounts for half of this invariant rest mass, which leaves its unit-charge related "intrinsic-electric-field" to account for the other half of its rest mass.
But Marmet also showed that the "intrinsic-magnetic-field" of the electron seems to increase with velocity synchronously with the observed increase in its relativistic mass, which, upon analysis, revealed that the velocity related "magnetic-field-increment", that is, its "velocity-related-relativistic-mass-increment", is not part of the electron "intrinsic-rest-mass" but is rather contributed by its varying-velocity related "varying-carrying-energy".
Close analysis shows that this "varying-carrying-energy" also has an "oscillating-magnetic-field", that establishes a "least-action-relative-spin-orientation" with respect to that of the rest mass of the electron.
This carrying-energy has all the characteristics of a "free moving electromagnetic photon", whose velocity would be slowed down to the observed electron velocity only due to the fact that it has to "propel" the inert rest mass of the electron, on top of having to propel its own translationally-inert electromagnetically oscillating transverse magnetic field.
If interested, the complete summary of this analysis, with proper and available detailed references is available in this recently published paper titled "The Hydrogen Atom Fundamental Resonance States":
http://file.scirp.org/pdf/JMP_2018042716061246.pdf
The relative "spin" property is discussed in Section 17.
Best Regards
André
I worked, precisely, on this question some years ago, because it is hard to me to imagine a structure-less physical object, like an electron, which can be polarized. I published my findings, but these days there is no that much interest on clarifying the logical consistency of physical theories. We have established our own dogmas in science.
Article An Explanation of Spin Based on Classical Mechanics and Elec...
Dear Oscar,
Well, some have not given up on finally clarifying the nature of fundamental physical reality.
Highly interesting and informative paper that I will study in depth. Thank you for sharing.
Note that I carried out my analyses from fundamental Maxwell electromagnetism, that posits both E and B fields as simple geometric/mathematical representations of the observed electric and magnetic behavior characteristics of the really existing scatterable elementary EM particles, and not from the "electrodynamics" that posits the electric field as being more fundamental and from which I interpret (maybe wrongly) that the magnetic field and the actual energy simply are emergent properties, which is an approach that I found more restrictive and limiting than plain Maxwell electromagnetism.
I am at the beginning of the process of analysis in view of trying to formulate the complex superposition of the various transverse EM oscillations into coherent and usable resultant wave functions. A domain new to me that I have to explore from the ground up.
Now that the Maxwell compliant premises seem to be more clearly established to describe elementary EM resonators (it seems to me), this is the task that my mind seems to be drawn to.
Best Regards
André
André,
Thanks for the reference to the article, based on Marmet's work. It is interesting. And also your explanations of what you were saying about the varying magnetic field of electrons and entanglement of photons.
One of the things that I feel a bit uncomfortable about is putting so much emphasis on picturing an electron as if it is an object in space at all times. In the article on Hydrogen Atom resonance states, the author relies on this. He argues at one point that there is no reason to think that electrons don't exist in this state even when they are not involved in measurements.
When you talk about entanglement being a local phenomenon, it seems to me that what you are saying also derives from this idea that electrons are acting like objects in space with electrical fields of their own and magnetic fields of their own.
When electrons are involved in energetic interactions, then, yes, they clearly show their particle nature and the interactions are local events. However, in each case, these interactions relate to a collapse of the wave function. The wave function, in a sense, comes to a halt in that moment.
I don't think it makes sense to think of an electron as an object in space when it is obeying the Schrodinger equation, which means when it is not being measured.
I did find that article interesting, but it overlooks something that I think is very important: All electrons have the same rest mass and the same spin. There is nothing in all of his article that explains this. However, that seems to be of prime importance, since there appears to be something external that determines this property of all electrons. I believe the answer to this is the electron particle field.
If this is true, then the rest mass of the electron is determined by the electron particle field. This doesn't invalidate what the author was saying, especially in relation to the resonance states of the hydrogen atom, but it does change how I have to interpret all of the equations. The way I interpret it is that what he is describing is not the standalone electric or magnetic field of the electron, but, rather, the electron's ties to the electron particle field.
I say this because all electrons have the same exact rest mass, spin and charge. This means the electron particle field must be the original source of the electric charge. All of these properties come from the electron particle field, not from individual electrons. If this was all about individual objects in space, then why do they all have the same charge, spin, and rest mass?
I think that his conclusions that the electrical component represents half of the rest mass and the magnetic component represents half of the mass makes a lot of sense. But is this is electrical field and magnetic field of the electron by itself, or in relation to the electron particle field?
Entanglement between photons, it seems to me, do not relate well to the electrical approach with electrons. I know that it is common for physicists to think that photons carry the EM field, so they are driven by the EM field. However, photons actually have no electrical charge. And I believe we can equally say that they have no magnetic field as well. This is why photons do not directly attract or repel each other and beams of light are not deflected by other beams of light.
However, I do agree that the origination of entanglement appears to always begin with some local event. Entangled photons and electrons generally come from the same atom. I don't think it is possible for remotely separated particles to become entangled. They must be entangled at some point of origination or interaction. Then, after that, they can remain in a shared entangled state, even as they travel far away from each other.
However, the entangled state, from what I understand, is a shared quantum state. This shared state, itself, is non-local. But if the point you are making is that entanglement begins locally, then I agree with you. That makes sense.
Interesting discussion. Thanks for taking the time to explain further. And thanks for the article references.
Doug.
Dear Doug,
You write: "When you talk about entanglement being a local phenomenon, it seems to me that what you are saying also derives from this idea that electrons are acting like objects in space with electrical fields of their own and magnetic fields of their own."
Actually, the idea is that electrons would be acting like "permanently localized elementary electromagnetic energy quanta" whose physically existing "energy substance" can be mathematically described as permanent local electric and magnetic fields.
Ha! Collapse of the wave function. When the wave function is made to theoretically "collapse", we obtain the localization in space of the electron. Let us remember that the electron is a "negatively charged particle".
We obtain its localization with respect to what in physical reality?
Its localization within the orbital resonance volume defined by the wave function with respect to the positively charged nucleus. You then have its distance from the positive charge of the nucleus, and can thus easily calculate its energy, which easily gives you the velocity that the electron would have it if was freely moving with this amount of momentum energy.
You write: "I did find that article interesting, but it overlooks something that I think is very important: All electrons have the same rest mass and the same spin. There is nothing in all of his article that explains this"
Really?
If you are willing to run through the following exercise with a simple scientific calculator and a sheet of paper, you will be able to verify that equation (53) in this paper gives exactly the same invariant mass as the standard rest mass m_0=E/c^2 for all existing electrons. You simply need to use the values of the E and B fields of sub-equations (22), which are obtained from 5 well known invariant constants, and the values of sub-equations (54), and proceed yourself to calculate the value of equation (53).
Seems to me that it would be difficult to define the rest mass of the electron as being less invariant than the known invariant constants that it can be defined from.
What equation (53) does is simply shed some light on the possible inner electromagnetic nature of the electron mass.
you write: "If this was all about individual objects in space, then why do they all have the same charge, spin, and rest mass?"
Well, maybe because they all are created in the same manner. See this other analysis titled "The Mechanics of Electron-Positron Pair Creation in the 3-Spaces Model":
http://ijerd.com/paper/vol6-issue10/F06103649.pdf
You raise so many interesting points with this message in fact that I could easily generate a many pages answer that would end up being unwelcome and boring. So I only commented on these few items for now.
Best Regards
André
André,
As I said, I feel uncomfortable treating the electron as a permanently localized charged particle. That was why I felt uncomfortable with many of the conclusions drawn in that paper.
According to the Uncertainty Principle, if we know the momentum of a particle very well, then we will not know its location very well. If an electron is in the orbital of an atom, then its momentum is fairly well established. This is why its location cannot be.
To put this in a more general way, if we measure an electron and know its momentum exactly, then we have no idea where it is located. In other words, it is as if the wave function is spread out over the whole universe.
This is one reason why I feel uncomfortable with the idea that an electron is permanently localized.
Perhaps you could ease my discomfort if you can explain how a permanently localized particle is consistent with the uncertainty principle.
As for the second issue, I think you missed my point. You suggest that the answer to my question -- why all electrons posses the same spin, charge, and rest mass -- is that they are all created in the same manner.
I don't see electrons as permanently localized objects that were popped out of a machine at sometime in the past. It seems to me that their rest mass is sustained continuously through their relationship to the electron particle field. If they lose their connection to that field, then they will lose that charge and restmass. In fact, this is what appears to happen with the weak force. An electron stops acting like an electron when it interacts with the weak force, and then it starts acting like a neutrino.
I think that I am following the points you are making. Perhaps the feelings of discomfort that I have are not the same concerns you have. I can understand that. My interest in these things has been to delve as deeply as possible into the foundational issues of quantum mechanics. But I still have a lot to learn, so I find these discussions interesting.
Thanks.
Doug.
Dear Doug,
You conclude: "My interest in these things has been to delve as deeply as possible into the foundational issues of quantum mechanics. But I still have a lot to learn, so I find these discussions interesting."
My interest has been the same all along, and believe me, I also still have a lot to learn. I also find this conversation very interesting.
I perceive that you are intrigued by my viewpoint, that you can follow the logic, but can't figure out how what I say can connect with your own understanding.
The reason can only be that we each built our respective understanding of the submicroscopic level on different grounding premises, some of which are mutually exclusive by nature.
I perceive now that you see electrons as if they were singularities in an all-pervading underlying "possibly electric" field (the "ether"?) that gives it its properties, which implies that the properties of the singularities are actually properties of the "underlying field" and that from this perspective, the electron as an "object" separated from its sustaining field makes no sense, as it would loose the properties that the field gives it (correct me if I did not clearly understand your grounding perspective).
Not having in mind your exact set of grounding premises makes it difficult to establish the connections with my own set of grounding premises.
In parallel with this conversation with you, I have been having a discussion for a while in a different thread on precisely the grounding premises of the currently popular theories, and I am getting confused now as to what I explained in each thread from my viewpoint.
I am willing to carry on this conversation until we both clearly understand each others' foundations, but I think it would help a lot if you read the conversation I had in this other thread, starting with an exchange 9 days ago with Paul Gradenwitz, that went on until yesterday mainly with John-Erik Petersson:
https://www.researchgate.net/post/Michelson-Morley_experiment_can_it_really_disprove_ether#view=5b5204fbd7141b3fbe006d53
Reading this other conversation may help you see more clearly what I concluded from this other perspective and, more importantly, will avoid me repeating here arguments that I already made to you, thinking that I had made them in this other conversation.
In the mean time, I will prepare today a specific answer to your last message.
Best Regards
André
Dear Doug,
You write: "According to the Uncertainty Principle, if we know the momentum of a particle very well, then we will not know its location very well. If an electron is in the orbital of an atom, then its momentum is fairly well established. This is why its location cannot be."
We must bring to mind here the fact that the initial purpose of Schrödinger in introducing the wave function, was to represent a "resonance volume" that de Broglie had concluded that the electron seemed to remain captive into when stabilized in the hydrogen ground state.
When considering that the electron might be captive in some such "resonance state" in the ground state orbital, this is not in contradiction with the idea that the electron might still remain permanently localized while captive on some stochastic axial resonance trajectory within the volume that globally accounts for its momentum energy.
The fact that it would be resonating too fast within this volume for us to observe and pinpoint its location at any instant in time while it would be moving on such a resonance trajectory seems to me not in contradiction with this principle.
I give the example of a vibrating guitar cord in this paper that has just been picked. Even if it seems to "visually disappear" in its central region. we know all the same that it physically remained a permanently localized elastic cord under tension between two anchoring points. It is from this perspective that I say that permanent localization of the electron is not in contradiction with Heisenberg's uncertainty principle.
When one calculates the exact momentum energy that it has at any axial distance from the proton within this volume, in case of theoretical collapse of the wave function, we automatically know from the Coulomb equation (First Maxwell equation, that is Gauss's equation for the electric field when a second point-charge is introduced in the field) the actual distance it lies from the proton, and, from this momentum energy, we also know the velocity it will have if it was free to move with this amount of momentum energy.
From the electromagnetic perspective, electrons do not simply pop into existence out of nowhere. It is experimentally well established since the 1930's, that they are the confirmed product of "conversion of the energy" of electromagnetic photons of 1.022+ MeV or more into pairs of massive electron-positron when such photons graze close enough atomic nuclei.
In 1997, Kirk McDonald and his team even demonstrated experimentally that such 1.022+ MeV photons can even be destabilized by other photons into converting to massive electron-positron pairs:
http://www.slac.stanford.edu/exp/e144/
You write: "In fact, this is what appears to happen with the weak force. An electron stops acting like an electron when it interacts with the weak force, and then it starts acting like a neutrino."
From the electromagnetic perspective, there exists no such thing as the "weak force". The only "force" available from this perspective is the Coulomb force.
We know experimentally that electrons maintain an invariant unit charge for as long as they physically do not reconvert to EM energy by meeting a positron. From the electromagnetic perspective again, it seems that neutrinos can have no mass nor any electromagnetic properties except longitudinal inertia, which is a state quite different from that of electrons, and that seems to be borne out by observation.
Best Regards
André
André,
I agree with you that a good way to approach the question of foundations in QM is to get at what we are basing our conclusions on.
In my case, when I was talking about the electron particle field, this does not mean the electromagnetic field. These are two different fields.
The electron particle field was describe by Paul Dirac when he developed the equations for the electron. My understanding is that what he showed is that the properties of electrons are all tied to the electron particle field.
Dirac then used that equation for the electron to explore what happens when an electron accelerates. He showed that radiation is always involved. This is where the photon comes in, since the photon carries the radiant energy.
Now, as to the idea that it makes no sense to consider an electron and its properties outside of the electron particle field, or to generalize this even further, all of the matter-type (fermion) particles must always be considered in relation to fields; I've run across this in many places, but it is described in a very easy to understand way through Carlo Rovelli's book, "Reality Is Not What It Seems."
See Rovelli's recent book, pages 127-130, where he has a section called: Particles and Fields are the Same Thing. He describes Paul Dirac's work there as well, although I had run across Dirac's work long before.
The other important reason for seeing particles and their relationships to fields in quantum mechanics is because of how QM sees the origins of forces, like the EM force for example. This origin does not show up in traditional quantum formalism where only the Schrodinger equation is used. That is based on a non-relativistic quantum wave function.
In high energy cases, another approach must be taken and this is where virtual particles pass back and forth between charged particles. This is where the EM force originates. There has been quite a bit written about this, and a lot of it comes from work by Richard Feynman.
The strange thing that most physicists don't talk about is that even though all electrons carry a single negative charge, they do not all repel each other. Not at the quantum level they don't. It is actually a hit-or-miss sort of situation. Only 1 electron out of about 137 will emit a photon and only 1 electron out of about 137 will absorb a photon. All the rest of the time, electrons don't actually repel each other.
It only seems as if all electrons repel each other, and all electrons attract protons, because when you look at large charged objects that have millions of electrons, then clearly repulsion is always present. However, at the quantum level, this is hit or miss.
I read what you wrote in the other posting about how we need to be careful about what we really know versus what we think we know. Yes, that is always the challenge, especially with QM.
And, yes, most people have constructed a way of thinking about these things, and they are often quite different, so we have a challenge of how to talk from such wildly different ways of seeing things.
I have tried to get beyond just ways of thinking about it. I wanted to understand it more deeply. So, I've gotten used to switching to look at these things from many different ways of thinking about it.
Hopefully, this helps you get a better sense for the basis of what I was saying.
Thanks.
Doug.
André,
Now, about the Uncertainty Principle. One of the interesting things about the base electron orbital in hydrogen is that it has no angular momentum. This means that the electron sitting in this orbital is NOT revolving around the nucleus.
The idea of electrons revolving around the nucleus originally came from Bohr before they really understood the full picture of QM. By the early 1920's, they realized that Bohr's picture of the atom was wrong.
The problem started with the fact that if an electron is actually revolving around the nucleus, it must be accelerating, or changing its accelerating. Remember, to change direction requires acceleration. This means, as Paul Dirac showed (see my previous post) that the electron must radiate energy.
All of this meant that the electron would gradually lose energy over time and eventually fall into the nucleus. After all, the attraction of the protons in the nucleus is what is pulling the electron to stay near the nucleus.
Physicists discovered all of this in the early 1920's. This is when the real meaning of QM was first understood. This is when de Broglie and Schrodinger's work led to the idea of the quantum wave function.
What their work showed was that the electron sits in a resonant state in relation to the nucleus, but the ground state of the hydrogen atom is a state with no angular momentum. And because this angular moment is established, this means the location of the electron must be uncertain, if the uncertainty principle is valid.
This property is exactly what creates the apparent hard shell of atoms. It comes from an electron acting as if it is a cloud, rather than being localized at a point in space. This is why you can't squeeze atoms without a tremendous amount of force. Here is how Ruth Kastner described this:
"Now, suppose you tried to squeeze that electron cloud down to a smaller cloud. This would decrease the uncertainty of its position by confining it to a smaller region. The HUP [Heisenberg Uncertainty Principle] then dictates that its momentum—in this case, momentum straight inward or outward from the nucleus—would become more uncertain. With increasing uncertainty in momentum comes a greater likelihood of a larger momentum, which corresponds to more energy of motion. More energy of motion means a greater resistive force pushing outward. Therefore, the tighter a space you try to cram the cloud into, the more energetically it will resist." (Kastner, Understanding Our Unseen Reality, 2015, Ch. 4)
Hopefully this better explains why I feel uncomfortable with the idea that the electron always exists in a localized state, because if it is always localized, and it is moving all around, (whether in a circle around the nucleus or in a zig-zag fashion doesn't matter), then it must radiate energy and gradually fall into the nucleus.
As for the weak force, I am talking about one of the four known forces of physics. This is also sometimes called the "Weak Nuclear Force." When the weak nuclear force interacts with an electron, the electron decays (vanishes) and is replaced by a neutrino. This weak force is what causes radioactive decay in large atoms, because it also causes up-quarks to decay into down-quarks, and when this happens protons decay into neutrons. In large atoms, such as Uranium, this creates an instability in the atom, which causes the atom to break apart.
As you say, neutrinos have no electrical charge, and they have a very different rest mass, much smaller than the rest mass of electrons. As far as I can see, this is what those particles look like when they are not a part of the electron particle field. Of course, this is simply my way of looking at it, but hopefully this gives you a sense of why I say that.
I hope this helps.
Thanks.
Doug.
Dear Doug,
What you describe about the electron in the hydrogen ground state is precisely how I would have described it to you, except for the part that refers to the absence of momentum energy.
Since the electron and the proton are electrically charged in opposition, it is physically impossible that they would not be induced with adiabatic momentum energy vectorially oriented axially between them as a direct function of the distance separating them at all time, however this distance may vary about the mean orbital ground state distance (First Maxwell equation, that is, Gauss's equation for the electric field).
The adiabatic nature of the energy induced by the Coulomb force is analyzed in this separate paper titled "On Adiabatic Processes at the Elementary Particle Level":
https://www.omicsonline.org/open-access/on-adiabatic-processes-at-the-elementary-particle-level-2090-0902-1000177.pdf
The adiabatic nature of momentum energy induction in the electron towards the proton is the reason why no energy radiates as it is captive on such an axial resonance trajectory about the mean orbital distance.
The adiabatic nature of Coulomb force energy induction in charged particles simply has escaped attention due to not having been analyzed until recently.
There is no need for the electron to orbit the proton to remain captive in electromagnetic least action axial equilibrium about the mean ground state distance from a proton. It can perfectly well remain translationally immobile on only one side of the proton, which is what happens when two hydrogen atoms join into a molecule as their electrons join between the protons in an antiparallel magnetic covalent bound. Very familiar in chemistry.
The constant interplay due to the frequencies difference of the various elementary particles magnetic spheres involving the inverse cube magnetic interaction law with distance, that opposes the unidirectional adiabatic momentum energy that constantly tends to propel the electron toward the proton, to an uninterrupted sequence of magnetic attraction-repulsion phases between the electron magnetic aspect and those of the proton inner elementary components, can only result in the establishment of the stable axial resonance state that de Broglie suspected.
This is what the paper on "The Hydrogen Atom Fundamental Resonance States" puts in perspective, including the mechanical quantized axial beat sequence that can no doubt be related to the regularities of the fine structure of the hydrogen spectrum that Sommerfeld first associated to a hypothetical elliptical orbit that the electron would follow, in his attempt to explain the fine splitting of the main spectral lines:
http://file.scirp.org/pdf/JMP_2018042716061246.pdf
There is no way that the electron can fall on the proton, because it remains permanently in parallel spin repulsive magnetic orientation with at least one or other of the inner elementary components of the proton.
I clearly understand what you explain from your perspective, but to understand and explain the same observations from the electromagnetic perspective, the dynamic inner EM structure of elementary charged particles as they can be described in the trispatial geometry must be understood.
Indeed, I am familiar with all that you explain, and know about "the four so-called known forces of physics". This perspective was what I first studied and learned about, like all of us, but that I found unsatisfactory and illogical for a number of reasons, the main reason being that it provides no clear mechanical explanation to energy transitions.
Then I progressively became familiar with the electromagnetic perspective, from which only one force besides magnetic interaction is required to explain all stable least action electromagnetic equilibrium states.
Unfortunately, I cannot explain in every detail in such an ad hoc conversation all aspects of a perspective that required about 20 articles to properly put in perspective, but every detail of the analysis is available in the interconnected sequence of papers.
Whoever has not already drawn final conclusions about the sub-microscopic level and takes the time to study the model, will end up understanding it in all of its aspects.
The one step remaining to be established is the progressive mechanical explanation of the transitions between stationary states that de Broglie and Schrödinger were working to resolve, but that was left unaddressed since Heisenberg's statistical method became the tool of choice in the community instead of the wave function itself. This is what I am now studying to hopefully resolve.
Best Regards
André
Dear Doug,
Reading back our recent exchanges, I observe that I had not noticed your message where you mention that you have read the other thread that I referred you to.
I observe that in this message you mention what you name "the electromagnetic field".
If you think that this is what I am talking about when I mention electromagnetism, it is not the case.
I refer to the original Maxwell electromagnetic theory that I observe that very few people seem to have clearly understood over the past century. One notable exception being Louis de Broglie.
The idea of a single "electromagnetic field" stems from tensor geometry that generalizes electromagnetic properties in this manner.
The problem with this approach is that it obscures the fact that in the initial Maxwell electromagnetism, the one that gave us the only means to calculate the speed of light from experimentally defined equations, both electric and magnetic fields are separate concepts that describe different properties of the really existing "energy" that the "mathematical fields" are meant to describe, on top of the critically important aspect that they mutually induce each other.
Without becoming aware that such an idea as "a single electromagnetic field" is meaningless in true electromagnetism, and without becoming clearly aware of the distinct actual electric and magnetic properties of the electric dipole and magnetic dipole as can be defined from true Maxwell compliant electromagnetism, there is no way for you to understand what I explain.
Even Feynman fell into the "single electromagnetic field" trap.
From what I observed, true electromagnetism was disconnected from general understanding of the fundamental level in the community as soon as the tensor geometry began to be popularized.
It is fine for general overview, but my view is that not clearly relating it to true Maxwell electromagnetism involving two separate "fields", it kills all hopes of finely analyzing the actual electric and magnetic properties of elementary particles.
Best Regards
André
André,
When I said that the ground state orbital of a hydrogen atom is a state without momentum, I was specifically talking about "angular" momentum. This means, there is no rotational momentum.
I just wanted to clear that up.
I can see where you are going with all the points you are making, and I find it interesting. However, where you have been looking for a "mechanical" explanation for energy transitions, I am only looking for explanations that deeply make sense to me. And from what I have learned, there are no fully mechanical explanations. This is why I have abandoned trying to make it all work using principles of classical physics.
You say that you have assembled a complete model that works well, except for one detail: how to account for the transition between orbital states.
For me, that isn't one minor detail, that is the single most important element. This was the one issue that caused quantum physicists to realize that classical physics could not explain the radiation of black bodies.
When black bodies are heated until they radiate, what we see are very specific narrow bands of frequencies, as I am sure you know. If there were actual transitions going on between these states, we would see light spread across the full spectrum, but we don't. We see only light in specific narrow bands. This suggested to the early quantum physicists that there was no transition between energy states.
That was the reason Heisenberg suggested that it should be treated statistically, and this was accepted by most physicists, after it worked out so well. This is all based on the idea that the energy states leap from one stable state to another with no in between transition.
If there is indeed no transition, then it clearly cannot be explained by classical physics because a force, in classical physics, can only accelerate objects. It would take an infinite force to make a discontinuous leap.
If you can explain how an electron could transition from one energy state to another with no transition in between, using classical physics, then I would be very interested to hear about it.
That would be interesting enough that I would then want to go through all the other pieces you have assembled to see how it all works. Although this would still only be an account that dealt with electric and magnetic forces, not the strong force.
I think the strong force is far more difficult to tackle because it only activates when three quarks come together with the exact right combination of "color" charges and the exact right combination of gluons. There is no transition in this activation either. Before the strong force activates, there is nothing moving the quarks together. As soon as it activates, however, they are suddenly facing the most powerful force in the world attracting them to each other.
I don't see how the strong force could be explained by classical physics either. These are some of the main reasons that I have stopped trying to explain subatomic phenomena with classical physics.
But if you can show how these quantum leaps can be explained using good old-fashioned physics, I think a lot of people would be interested.
Thanks.
Doug.
André,
Your point about keeping the electric field separate from the magnetic field is interesting.
I think that it is perfectly valid to treat them as two fields rather than one, especially if doing that reveals something that seeing them as one combined field might miss.
I am all for looking at things through different lenses. I think this is often the best way to show us new insights.
We often get stuck using one lens and miss things right before our eyes.
Thanks.
Doug.
Dear Doug
I agree that in the ground state orbital of a hydrogen atom the electron can have no "angular" momentum, only adiabatic axial momentum towards the proton inner components. Any transverse displacement in the orbital could conceptually be related to the permanent relative interaction with other particles in the environment, most probably stochastic in nature.
You wrote: " You say that you have assembled a complete model that works well, except for one detail: how to account for the transition between orbital states."
Well, it was impossible to even attempt to define these transitions before the electromagnetic resonance characteristics of the electron were established that gave de Broglie the hint that it could be captive in a related resonance state within the volume that was tentatively defined by Schrödinger with his wave function.
It took all of these papers to coherently describe the various aspects of what stems out from Maxwell's electromagnetism in order to completely lay the groundwork of detailed separate references that could be linked to for this last paper on the hydrogen atom fundamental resonance state to make any sense to whoever wanted to study the model in depth. Much longer to set up (20 years), but much easier to access and study than if I had written a 800 pages book that nobody would have found the time nor interest in reading.
Now that Maxwell's electromagnetism is correctly harmonized with a possible electromagnetic explanation of the stability of the hydrogen ground state, we are at the same point that de Broglie and Schrödinger were at in the 1920's before their line of research was neglected precisely due to the fact that this connection had not been made.
You wrote: "And from what I have learned, there are no fully mechanical explanations. This is why I have abandoned trying to make it all work using principles of classical physics."
No fully mechanical explanation could possibly be found at the time because of this disconnect between electromagnetism and QM. How could anybody possibly succeed before this disconnect was repaired?
I know history and all attempts that were made to find a solution "without Maxwell's electromagnetism being correctly harmonized with QM".
This doesn't mean that a fully mechanical progressive explanation cannot be found once the harmonization between QM and true electromagnetism is correctly established. By the same token, the surprise is that classical/relativistic mechanics completely harmonizes with Maxwell's equations.
I can tell you that if nobody else steps in, I will end up by default making headway myself towards establishing this coherent progressive mechanics of EM photon absorption and emission in relation with the transitions between the orbital states, for the simple reason that I seem to be the only one in the community who even thinks this is possible and is now actively studying with this aim in mind.
More than possible, I think it is now impossible that this will not be done, if not by me, then by somebody else in the upcoming generation, because all of my papers are now available in the permanent record.
Glad to see that you find interest in considering both the electric field and the magnetic field as being separate and describing different properties of the fundamental energy.
I assure you that if you persist, you will re-discover the last major theory entirely grounded on an equation set entirely built from hands-on experiments physically carried out at our macroscopic level (by Coulomb, Gauss, Ampere and Faraday, to name the majors), that led to being able to calculate the true speed of light from these equations; our first ever breach regarding the direct relation between electromagnetic energy at the submicroscopic level and what we observe at our macroscopic level.
Correct understanding of Maxwell's theory is what allowed de Broglie to correctly define the electromagnetic properties that his double-particle photon concept must have to remain Maxwell compliant, and that correctly guided me to the understanding that the wavelength of electromagnetic photons moving in vacuum can only be the "distance" that the transversely EM oscillating energy of the longitudinally-point-like-behaving photon travels for one of its transverse mutual EM induction cycle to be completed.
No need for any underlying medium that can oscillate only transversely as in the current wave theory. No need for any underlying medium. Photons can now be defined as self-propelling and self-guiding in straight line when no electromagnetic interaction tends to deflect their trajectories or cause changes in their polarity alignment, and this, in full agreement with Maxwell's equations.
I found that re-focusing the most fundamental grounding premise on the idea that both fields are equally important "mathematical representations" of the two aspects of the "physically existing energy substance" that we can observe, is key to finding coherence in all observations made of the submicroscopic level since the experiments carried out by Kaufman at the turn of the 20th century.
Best Regards
André
André,
I encourage you to continue. Don't worry about being the only one working on this, because the search and discovery itself is where the real value is.
I have also taken a path of research that is in a different direction. After years, I am expecting my formal paper to be published in the next month or so, in a peer reviewed journal.
The part I like the best is what I've learned and how it has changed me. Hopefully there will be at least some others who enjoy the effort as well.
Good luck.
Doug.
Dear Doug,
Looking forward to reading your coming paper too.
Best Regards and the best of luck.
André