If vg is varying from 0 to 2 in steps of 0.01, i.e vg=linspace(0,2,N), N=100
n is varying from 1 to N
eq1(n) ------>(xo2(n) +xo(n) +xar(n) - 1-Vg(n))=0;
eq2(n) ------>(2*xo2(n) +xo(n) -4*xar(n)-4*Vg(n))=0;
eq3(n) ------>(2.063E-4*xo2(n) - xo(n)^2)=0;
how to solve roots (xo, xo2, xar) for the above three equations at each value of Vg(0 to 2 in steps of 0.01)?