How do I add the Initial and Boundary Conditions to the following Python code for the Heat-Diffusion Equation: uxx + (1 – x)sin(t) = utt, with boundary conditions u(0, t) = 0, u(1, t) = 0, for t > 0, and u(x, 0) = 0, for 0 < x < 1?

The code is:

from sympy import *

x, y, z, t = symbols('x y z t')

k, m, n = symbols('k m n', integer=True)

f, g, h = symbols('f g h', cls=Function) import numpy as np

import matplotlib.pyplot as plt

from sympy import init_printing

init_printing()

integrate(x)

from sympy import Function, dsolve, Eq, integrate, Derivative, sin, cos, symbols

from sympy.solvers.pde import pdsolve

from sympy import Function, diff, Eq

from sympy.abc import x, y, a, b, A, B, C, L

# Solve the Heat-Diffusion Equation uxx + (1 – x)sin(t) = utt, with boundary

# conditions u(0, t) = 0, u(1, t) = 0, for t > 0, and u(x, 0) = 0, for

# 0 < x < 1 t, C1, C2= symbols("t C1 C2")

ux, ut = symbols('ux ut', cls=Function)

eq1 = ut(x).diff(x, x) + (1 - x)*sin(t)

eq2 = ux(t).diff(t)

dsolve(eq1, ut(x))

dsolve(eq2, ux(t)) utsol = dsolve(eq1, ut(x)).subs(Symbol("C"), Function("Cx")(b))

utsol

eq2.subs(*utsol.args).doit()

uxsol = dsolve(eq2.subs(*utsol.args).doit(), ux(t)).subs(Symbol("C"), Function("Ct")(a))

display(uxsol)

print(uxsol)

display(utsol)

Similar questions and discussions