Thank you for your explanation. Now to return to time domain after applying some filtering methods to remove noise, is same code applicable to return from frequency domain to time domain?
Fs= 0:125/16383:125; %Fs=125/16383
t=131.064; %sampling time, t=131.064 s
freq=Fs'; %freq=transpose(Fs)
max(Inputa); % max=the maximum value of the imported data
subplot(2,1,1);plot(freq,Inputa)
title('acceleration-frequency')
L=length(Inputa) % L is the no. of points or the no. of reading
NFFT=2^nextpow2(L) %make the sequence length equal to 2n
b=ifft(Inputa,NFFT) %determine the fft of Inputa
z=abs(b)
time=t/L*linspace(0,L,L)
n=length(time)
subplot(2,1,2),plot(time,z(1:n))
title('acceleration-time')
In this code I have changed some expressions, for instance I have used ifft function to return to time domain. Do you think it is true?