How can artificial intelligence help conduct economic and financial analysis, sectoral and macroeconomic analysis, fundamental and technical analysis ...?
How should one carry out the process of training generative artificial intelligence based on historical economic data so as to build a system that automatically carries out economic and financial analysis ...?
How should the process of training generative artificial intelligence be carried out based on historical economic data so as to build a system that automatically carries out sectoral and macroeconomic analyses, economic and financial analyses of business entities, fundamental and technical analyses for securities priced on stock exchanges?
Based on relevant historical economic data, can generative artificial intelligence be trained so as to build a system that automatically conducts sectoral and macroeconomic analyses, economic and financial analyses of business entities, fundamental and technical analyses for securities priced on stock exchanges?
The combination of various analytical techniques, ICT information technologies, Industry 4.0/5.0, including Big Data Analytics, cloud computing, multi-criteria simulation models, digital twins, Business Intelligence and machine learning, deep learning up to generative artificial intelligence, and quantum computers characterized by high computing power, opens up new, broader possibilities for carrying out complex analytical processes based on processing large sets of data and information. Adding generative artificial intelligence to the aforementioned technological mix also opens up new possibilities for carrying out predictive analyses based on complex, multi-factor models made up of various interrelated indicators, which can dynamically adapt to the changing environment of various factors and conditions. The aforementioned complex models can relate to economic processes, including macroeconomic processes, specific markets, the functioning of business entities in specific markets and in the dynamically changing sectoral and macroeconomic environment of the domestic and international global economy. Identified and described trends of specific economic and financial processes developed on the basis of historical data of the previous months, quarters and years are the basis for the development of forecasts of extrapolation of these trends for the following months, quarters and years, taking into account a number of alternative situation scenarios, which can dynamically change over time depending on changing conditions and market and sectoral determinants of the environment of specific analyzed companies and enterprises. In addition to this, the forecasting models developed in this way can apply to various types of sectoral and macroeconomic analyses, economic and financial analyses of business entities, fundamental and technical analyses carried out for securities priced in the market on stock exchanges. Market valuations of securities are juxtaposed with the results of the fundamental analyses carried out in order to diagnose the scale of undervaluation or overvaluation of the market valuation of specific stocks, bonds, derivatives or other types of financial instruments traded on stock exchanges. In view of the above, opportunities are now emerging in which, based on relevant historical economic data, generative artificial intelligence can be trained so as to build a system that automatically conducts sectoral and macroeconomic analyses, economic and financial analyses of business entities, fundamental and technical analyses for securities priced on stock exchanges.
I described the key issues of opportunities and threats to the development of artificial intelligence technology in my article below:
OPPORTUNITIES AND THREATS TO THE DEVELOPMENT OF ARTIFICIAL INTELLIGENCE APPLICATIONS AND THE NEED FOR NORMATIVE REGULATION OF THIS DEVELOPMENT
Article OPPORTUNITIES AND THREATS TO THE DEVELOPMENT OF ARTIFICIAL I...
In view of the above, I address the following question to the esteemed community of scientists and researchers:
Based on relevant historical economic data, is it possible to train generative artificial intelligence so as to build a system that automatically conducts sectoral and macroeconomic analyses, economic and financial analyses of business entities, fundamental and technical analyses for securities priced on stock exchanges?
How should the process of training generative artificial intelligence based on historical economic data be carried out so as to build a system that automatically carries out sectoral and macroeconomic analyses, economic and financial analyses of business entities, fundamental and technical analyses for securities priced on stock exchanges?
How should one go about training generative artificial intelligence based on historical economic data so as to build a system that automatically conducts economic and financial analyses ...?
What do you think about this topic?
What is your opinion on this issue?
Please answer,
I invite everyone to join the discussion,
Thank you very much,
Best regards,
Dariusz Prokopowicz
The above text is entirely my own work written by me on the basis of my research.
In writing this text I did not use other sources or automatic text generation systems.
Copyright by Dariusz Prokopowicz