In an open market wind generators are generally 'price takers' because they have little ability to bid for future generation without knowing the wind speed, so they have to take what ever price they can get at the time. Generators with some sort of storage capacity (either at their input like fossil fuels, or on their outputs via batteries or other systems) can bid more effectively because they can guarantee supply.
Wind energy is an intermittent source that depends on presence of wind speed in the range greater than the so-called cut-in wind speed and less than the so-called cut-out wind speed. Hence, without an integrated energy storage technology to offset the intermittency issue, I'd say demand response of wind farms is not reliable. Two more thing to keep in mind: 1) The "availability" of wind farms is not high and 2) The maximum efficiency of wind turbine is about 59.3% (Betz's Law).
Variability and uncertainty have been an inherent part of managing the power system since Westinghouse and Edison built the first central station power plants in the late 1800s. While power system engineers have developed a number of supply-side mechanisms to keep electricity supply and demand in balance during the intervening century, recent technological advances have made it possible to use demand-side assets like demand response (DR) resources for this purpose as well. Though not essential for achieving high levels of wind penetration, smart grid technologies can help grid operators accommodate the incremental variability and uncertainty added by wind energy in a more efficient and cost-effective manner.
Demand response is a change in the power consumption of an electric utility customer to better match the demand for power with the supply. Electric energy can not be easily stored, so utilities have traditionally matched demand and supply by throttling the production rate of their power plants, taking generating units on or off line, or importing power from other utilities. There are limits to what can be achieved on the supply side, because some generating units can take a long time to come up to full power, some units may be very expensive to operate, and demand can at times be greater than the capacity of all the available power plants put together. Demand response seeks to adjust the demand for power instead of adjusting the supply.
Utilities may signal demand requests to their customers in a variety of ways, including simple off-peak metering, in which power is cheaper at certain times of the day, and smart metering, in which explicit requests or changes in price can be communicated to customers.
The customer may adjust power demand by postponing some tasks that require large amounts of electric power, or may decide to pay a higher price for their electricity. Some customers may switch part of their consumption to alternate sources, such as on-site diesel generators.
In many respects, demand response can be put simply as a technology-enabled economic rationing system for electric power supply. In demand response, voluntary rationing is accomplished by price incentives—offering lower net unit pricing in exchange for reduced power consumption in peak periods. The direct implication is that users of electric power capacity not reducing usage (load) during peak periods will pay "surge" unit prices, whether directly, or factored into general rates.
Involuntary rationing, if employed, would be accomplished via rolling blackouts during peak load periods. Practically speaking, summer heat waves and winter deep freezes might be characterized by planned power outages for consumers and businesses if voluntary rationing via incentives fail to reduce load adequately to match total power supply.