We are particularly interested in the role played by GlyRs and GlyTs regulating reflex inhibition of muscle movement in the spinal cord, specially regarding Renshaw neurons
# Cantoria MJ, See PA, Singh H, de Leon RD. Adaptations in glutamate and glycine content within the lumbar spinal cord are associated with the generation of novel gait patterns in rats following neonatal spinal cord transection. J Neurosci. 2011 Dec 14;31(50):18598-605.
Liabeuf S, Pearlstein E, Sadlaoud K, Stil A, Tazerart S, Vinay L. Chapter
1--importance of chloride homeostasis in the operation of rhythmic motor
networks. Prog Brain Res. 2011;Review.
# Stil A, Jean-Xavier C, Liabeuf S, Brocard C, Delpire E, Vinay L, Viemari JC.
Contribution of the potassium-chloride co-transporter KCC2 to the modulation of lumbar spinal networks in mice. Eur J Neurosci. 2011 Apr;33(7):1212-22. doi: 10.1111/j.1460-9568.2010.07592.x. Epub 2011 Jan 24.
# Nishimaru H, Kakizaki M. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord. Acta Physiol (Oxf). 2009 Oct;197(2):83-97. doi: 10.1111/j.1748-1716.2009.02020.x. Epub 2009 Jul 16. Review.
# Vinay L, Jean-Xavier C. Plasticity of spinal cord locomotor networks and
contribution of cation-chloride cotransporters. Brain Res Rev. 2008
Jan;57(1):103-10. Epub 2007 Sep 20. Review.
# McLean DL, Fan J, Higashijima S, Hale ME, Fetcho JR. A topographic map of
recruitment in spinal cord. Nature. 2007 Mar 1;446(7131):71-5.
# Hinckley C, Seebach B, Ziskind-Conhaim L. Distinct roles of glycinergic and
GABAergic inhibition in coordinating locomotor-like rhythms in the neonatal mouse spinal cord. Neuroscience. 2005;131(3):745-58.