When a model is trained using a specific dataset with limited diversity in labels, it may accurately predict labels for objects within that dataset. However, when applied to real-time recognition tasks using a webcam, the model might incorrectly predict labels for objects not present in the training data. This poses a challenge as the model's predictions may not align with the variety of objects encountered in real-world scenarios.
Are there any solutions or opinions that experts can share to guide me further in improving the model?
Thank you for considering your opinion on my problems.