I implemented the following piece of code.
clc;close all;clear all;
import weka.classifiers.Classifier
import weka.classifiers.bayes.BayesNet
import weka.classifiers.Evaluation;
v0 = java.lang.String('-I');
v01 = java.lang.String('200');
v02 = java.lang.String('-S');
v03 = java.lang.String('3');
v1 = java.lang.String('-t');
v2 = java.lang.String('C:\Program Files\Weka-3-6\data\iris.arff');
v3 = java.lang.String('-T');
v4 = java.lang.String('C:\Program Files\Weka-3-6\data\iris.arff');
v5 = java.lang.String('-W');
v6 =java.lang.String('weka.classifiers.trees.J48');
v06 = java.lang.String('--');
v7 = java.lang.String('-C');
v8 = java.lang.String('0.5');
prm = cat(1,v0,v01,v02,v03,v1,v2,v3,v4,v5,v6,v06,v7,v8);
output = Evaluation.evaluateModel(javaObject('weka.classifiers.meta.AdaBoostM1'),prm);
My main question is: How can I obtain outputs? (As you know the output with the means of "Evaluation" will be string). How can I get the confusion matrix from the output?
Looking forward to your replies.