Following code is taken form (http://dipwm.blogspot.com/2013/01/svm-support-vector-machine-with-matlab.html)  This is very easy to understand but how to show results of classification?

clc;

clear all;

% Load Datasets

Dataset = 'C:\D\Implementation\Dataset';

Testset = 'C:\D\Implementation\Testset';

%load Dataset;

%Load Testset;

% we need to process the images first.

% Convert your images into grayscale

% Resize the images

width=100; height=100;

DataSet = cell([], 1);

for i=1:length(dir(fullfile(Dataset,'*.jpg')))

% Training set process

k = dir(fullfile(Dataset,'*.jpg'));

k = {k(~[k.isdir]).name};

for j=1:length(k)

tempImage = imread(horzcat(Dataset,filesep,k{j}));

imgInfo = imfinfo(horzcat(Dataset,filesep,k{j}));

% Image transformation

if strcmp(imgInfo.ColorType,'grayscale')

DataSet{j} = double(imresize(tempImage,[width height])); % array of images

else

DataSet{j} = double(imresize(rgb2gray(tempImage),[width height])); % array of images

end

end

end

TestSet = cell([], 1);

for i=1:length(dir(fullfile(Testset,'*.jpg')))

% Training set process

k = dir(fullfile(Testset,'*.jpg'));

k = {k(~[k.isdir]).name};

for j=1:length(k)

tempImage = imread(horzcat(Testset,filesep,k{j}));

imgInfo = imfinfo(horzcat(Testset,filesep,k{j}));

% Image transformation

if strcmp(imgInfo.ColorType,'grayscale')

TestSet{j} = double(imresize(tempImage,[width height])); % array of images

else

TestSet{j} = double(imresize(rgb2gray(tempImage),[width height])); % array of images

end

end

end

% Prepare class label for first run of svm

% I have arranged labels 1 & 2 as per my convenience.

% It is always better to label your images numerically

% Please note that for every image in our Dataset we need to provide one label.

% we have 30 images and we divided it into two label groups here.

train_label = zeros(size(8,1),1);

train_label(1:4,1) = 1; % 1 = Airplanes

train_label(5:8,1) = 2; % 2 = Faces

% Prepare numeric matrix for svmtrain

Training_Set=[];

for i=1:length(DataSet)

Training_Set_tmp = reshape(DataSet{i},1, 100*100);

Training_Set=[Training_Set;Training_Set_tmp];

end

Test_Set=[];

for j=1:length(TestSet)

Test_set_tmp = reshape(TestSet{j},1, 100*100);

Test_Set=[Test_Set;Test_set_tmp];

end

% Perform first run of svm

SVMStruct = svmtrain(Training_Set , train_label, 'kernel_function', 'linear');

Group = svmclassify(SVMStruct, Test_Set);

Please help

More Shafaq Nisar's questions See All
Similar questions and discussions