Following code is taken form (http://dipwm.blogspot.com/2013/01/svm-support-vector-machine-with-matlab.html) This is very easy to understand but how to show results of classification?
clc;
clear all;
% Load Datasets
Dataset = 'C:\D\Implementation\Dataset';
Testset = 'C:\D\Implementation\Testset';
%load Dataset;
%Load Testset;
% we need to process the images first.
% Convert your images into grayscale
% Resize the images
width=100; height=100;
DataSet = cell([], 1);
for i=1:length(dir(fullfile(Dataset,'*.jpg')))
% Training set process
k = dir(fullfile(Dataset,'*.jpg'));
k = {k(~[k.isdir]).name};
for j=1:length(k)
tempImage = imread(horzcat(Dataset,filesep,k{j}));
imgInfo = imfinfo(horzcat(Dataset,filesep,k{j}));
% Image transformation
if strcmp(imgInfo.ColorType,'grayscale')
DataSet{j} = double(imresize(tempImage,[width height])); % array of images
else
DataSet{j} = double(imresize(rgb2gray(tempImage),[width height])); % array of images
end
end
end
TestSet = cell([], 1);
for i=1:length(dir(fullfile(Testset,'*.jpg')))
% Training set process
k = dir(fullfile(Testset,'*.jpg'));
k = {k(~[k.isdir]).name};
for j=1:length(k)
tempImage = imread(horzcat(Testset,filesep,k{j}));
imgInfo = imfinfo(horzcat(Testset,filesep,k{j}));
% Image transformation
if strcmp(imgInfo.ColorType,'grayscale')
TestSet{j} = double(imresize(tempImage,[width height])); % array of images
else
TestSet{j} = double(imresize(rgb2gray(tempImage),[width height])); % array of images
end
end
end
% Prepare class label for first run of svm
% I have arranged labels 1 & 2 as per my convenience.
% It is always better to label your images numerically
% Please note that for every image in our Dataset we need to provide one label.
% we have 30 images and we divided it into two label groups here.
train_label = zeros(size(8,1),1);
train_label(1:4,1) = 1; % 1 = Airplanes
train_label(5:8,1) = 2; % 2 = Faces
% Prepare numeric matrix for svmtrain
Training_Set=[];
for i=1:length(DataSet)
Training_Set_tmp = reshape(DataSet{i},1, 100*100);
Training_Set=[Training_Set;Training_Set_tmp];
end
Test_Set=[];
for j=1:length(TestSet)
Test_set_tmp = reshape(TestSet{j},1, 100*100);
Test_Set=[Test_Set;Test_set_tmp];
end
% Perform first run of svm
SVMStruct = svmtrain(Training_Set , train_label, 'kernel_function', 'linear');
Group = svmclassify(SVMStruct, Test_Set);
Please help