To address ethics and bias in medicine, a comprehensive evaluation process is required, which will encompass all aspects of such systems, from model development through clinical deployment. Addressing these biases is crucial to ensure that AI-ML systems remain fair, transparent, and beneficial to all.
As artificial intelligence (AI) gains prominence in pathology and medicine, the ethical implications and potential biases within such integrated AI models will require careful scrutiny. Ethics and bias are important considerations in our practice settings, especially as an increased number of machine learning (ML) systems are being integrated within our various medical domains. Such ML-based systems have demonstrated remarkable capabilities in specified tasks such as, but not limited to, image recognition, natural language processing, and predictive analytics. However, the potential bias that may exist within such AI-ML models can also inadvertently lead to unfair and potentially detrimental outcomes.
Article Ethical and Bias Considerations in Artificial Intelligence (...