In your opinion, can the new technologies of Industry 4.0, including, above all, artificial intelligence, machine learning, deep learning applied in combination with large sets of data, information and knowledge collected and processed on Big Data Analytics platforms, help in the satellite analysis of the rate of biodiversity loss of the planet's different natural ecosystems?

As part of the technological advances that have been taking place in recent years, which are also rapidly advancing as part of the development of ICT information technologies and Industry 4.0, more and more sophisticated analytical instruments and research techniques are being developed to carry out increasingly complex, multifaceted and Big Data-based analyses of the various processes taking place in nature and to obtain increasingly precise results from the research conducted. With the combination of ICT information technology and Industry 4.0 with satellite analysis technology, the analyses of changes in the biodiversity of the planet's various natural ecosystems carried out using satellites placed in planetary orbit are also being improved. Taking into account the negative human impact on the biodiversity of the planet's natural ecosystems that has been taking place since the beginning of the development of the first technological and industrial revolution, and especially in the Anthropocene epoch from the mid-20th century onwards, there is a growing need to counteract these negative processes, a need to increase the scale and outlays allocated to the improvement of nature conservation systems and instruments, including the protection of the biodiversity of the planet's natural ecosystems.

Improving nature conservation and biodiversity protection systems also requires cyclic surveys of the state of biodiversity of individual terrestrial and marine natural ecosystems of the planet and analyses of progressive environmental degradation and the rate of biodiversity loss. In the situation of obtaining more precise results of research concerning changes in the state of the natural environment and the rate of loss of biodiversity of particular terrestrial and marine natural ecosystems of the planet occurring in various climate zones, changes in the state of the climate and diagnosing key civilisational determinants generating those changes, it is possible to apply specific actions and systemic solutions within the framework of counteracting negative processes of degradation of the natural environment and loss of biodiversity within the framework of improving nature protection techniques more effectively and adapted to the specific nature of a given local biosphere, climate conditions, diagnosed processes of the aforementioned changes but also economic factors. In this connection, the technology of artificial intelligence, which has been developing particularly rapidly in recent years, can also prove helpful in the process of improving the planning, design, management and restoration of natural ecosystems, taking into account a high degree of sustainability, biodiversity and naturalness, i.e. the restoration of natural ecosystems that existed in a specific area centuries ago. In the process of the aforementioned restoration of sustainable, highly biodiverse terrestrial and marine natural ecosystems of the planet, many primary factors must also be taken into account, including geological and climatic factors as well as the modifications previously applied to the area by man concerning geology, land irrigation, drainage, microclimate, soil quality, environmental pollution, the presence of certain invasive species of flora, fauna, fungi and microorganisms. Therefore, the process of planning, design, management and restoration of biodiverse natural ecosystems should take into account many of the above-mentioned factors that are a mix of natural biotic, climatic, geological and abiotic factors and changes in these factors that have taken place over the last centuries or millennia, i.e. changes and side-effects of the development of human, unsustainable civilisation, the development of a robber economy based on intensive industrial development with ignoring the issue of negative externalities towards the surrounding natural environment.

Considering how this should be a complex, multifaceted process of planning, designing, arranging and restoring the planet's biodiverse, natural ecosystems, the application in this process of the new generations of Industry 4.0 technologies, including, above all, artificial intelligence based on large sets of data, information and knowledge concerning many different aspects of nature, ecology, climate, civilisation, etc., collected and processed on Big Data Analytics platforms, can be of great help. On the other hand, artificial intelligence technology combined with satellite analytics can also be of great help in improving research processes aimed at investigating changes in the state of the planet's biosphere, including analysis of the decline in biodiversity of individual ecosystems occurring in specific natural areas and precise diagnosis of the rate of the aforementioned negative changes resulting in environmental degradation and the key determinants causing specific changes.

I will write more about this in the book I am currently writing. In this monograph, I will include the results of my research on this issue. I invite you to join me in scientific cooperation on this issue.

Counting on your opinions, on getting to know your personal opinion, on an honest approach to discussions in scientific problems, and not on ready-made answers generated in ChatGPT, I deliberately used the phrase "in your opinion" in the question.

In view of the above, I address the following question to the esteemed community of scientists and researchers:

In your opinion, can the new technologies of Industry 4.0, including especially artificial intelligence, machine learning, deep learning applied in combination with large datasets, information and knowledge collected and processed on Big Data Analytics platforms help in the satellite analysis of the rate of biodiversity loss of the planet's various natural ecosystems?

Can artificial intelligence and Big Data Analytics help in the satellite analysis of the rate of biodiversity loss of the planet's different natural ecosystems?

What do you think about this topic?

What is your opinion on this subject?

Please respond,

I invite you all to discuss,

Counting on your opinions, on getting to know your personal opinion, on an honest approach to discussing scientific issues and not ChatGPT-generated ready-made answers, I deliberately used the phrase "in your opinion" in the question.

The above text is entirely my own work written by me on the basis of my research.

I have not used other sources or automatic text generation systems such as ChatGPT in writing this text.

Copyright by Dariusz Prokopowicz

Thank you very much,

Warm regards,

Dariusz Prokopowicz

More Dariusz Prokopowicz's questions See All
Similar questions and discussions